NOVEJŠE UGOVOTTIVE O OBSEGU IN POMENU PROPADANJA GOZDOV NA POHORJU IN KOZJAKU (ALPSKA FLORNA PROVINCA NA MEJI S PANONSKO IN ILIRSKO PROVINCO)

Zoran BELEC*

Izvleček

THE RECENT FINDINGS ABOUT THE EXTENT AND MEANING OF FOREST DECLINE ON POHORJE AND KOZJAK (THE ALPINE FLORAL REGION NEAR ITS BORDER TO THE PANNONIAN AND ILLYRIAN REGION)

Zoran BELEC*

Abstract
The recent findings about the development of the state of health in forests and about the possible causes of forest changing are discussed in the article. The vitality of forest trees in the studied period (1985 - 1991) was evaluated by the same person - the author of this article. The social classes of the most abundant three tree species - fir, spruce and beech - were defined. It was found that the dominant trees were much worse injured than the other trees. This could be explained with greater exposition of crowns of predominant, dominant and co-dominant trees to polluted air and with their already reached physiological age. The diameter increments of fir and spruce trees are in negative correlation with loss of their needles. No such tendency could have been found in case of beech trees. The results of lichen bioindication agree with the results of forest trees' bioindication - the impact of air pollution decreases from the top of the tree crown to the ground. The state of health is the worst in fir forests of the Galio-Abietetum type, where the loss of needles in the years 1990 and 1991 reached 23% respectively 22%. The loss of leaves (or needles) in these two years was the lowest in the oak-beech forests and fir-beech forests (14% - 16%). The needle loss in spruce stands was in the year 1991 for good 25% lower than in the year 1990 (19% resp. 14%). This was especially expressed in case of spruce monocultures of the Luzulo sylvaticæ-Piceetum type and on some growing sites of beech.

* mag. Z. B., dipl. int., Javna gospodarska služba, Tyrševa 15, 62000 Maribor, SLO
1 UVOD

Ko so se po l. 1980 pojavile "nove" poškodbe gozdnega drevja, se je v Srednji Evropi in posebej v Nemčiji razširila bojaza o bližnjem propadu gozdnih ekosistemov (Waldsterben). Edini povzročitelj propadanja gozdov naj bi bila onesnaženost zraka. Izrazilo odklonljivo javno mnenje je omogočilo stopnjevanje raziskovalnega dela v mnogih znanosti, ki se ukvarjajo s proučevanjem obstoja in delovanja gozdnih ekosistemov Srednji Evropi. Po l. 1986 so v Zahodni Nemčiji na podlagi dobro dokumentiranih razlik pri simptomih poškodovanosti, podnebju, onesnaževanju in drugem sprejeli novo zasnovno pojmovanje propaganja gozdov z upoštevanjem regionalnih tipov poškodovanosti. Izločili so pet vrst poškodb smrekovih dreves, po enega za jelko in bukev. Ker so se različne vrste poškodovanosti pojavile po vsej Zahodni Evropi skoraj hkrati, omogočajo domačo o skupnem sinkronem dejavniku. Za razlago vzrokov je postavljenih vsaj pet hipotez z različno stopnjo dokazanosti:

1. **Multipli stres** - splošna poškodovanost gozdov.
2. **Zaključek, izpiranje hranil in strupnosti aluminija** - prav tako splošna poškodovanost gozdov.
3. **Interakcija ozona in kise megle** - Porumenele iglice v višjih legah srednje visokih pogojev osrednje in severne Nemčije (400-600 m).
4. **Porumenele magnezija** - porumenele iglice v višjih legah srednje in južne Nemčije.
5. **Prekomerno odlaganje dušika** - redčenje krošenj v severnih obalnih področjih in dodaten dejavnik pri ostalih tipih.

L. 1985 smo v Sloveniji začeli popisovati propaganje gozdov in se z vzročnim metodo 4 x 4 km povezali z evropsko mrežo vzorčnih sestojev. Ugotavljanje poškodovanosti dreves je ena izmed bioindikacijskih metod v gozdnih ekosistemih, pri čemer posamezne gozdné drevesne vrste napovedujejo poškodovanost celotnega ekosistema. Vendar na gozdné drevesa zaradi njihove edifikatorske vloge ne vpliva samo onesnažen zrak, ki vstopa v zračni prostor sestojev, ampak tudi drugi ekološki dejavniki. Na zdravstveno stanje dreves, ki se kaže v osebnosti in porumenele krošenj, vplivajo posebn stres zaradi onesnaženosti življenje v mineralni prehrani, naravni biološki, antropogeni in splošni podobni stresi. Pri prekoj vzrokih za propaganje gozdov smo uporabili epifitske lišaje, na katere vpliva predvsem *pollucijski stres* in ki so potrebni za posredno ugotavljanje odlaganja (depozicije) onesnaževalcev v gozdné ekosisteme. Na vzhodnem delu obravnavanega področja nanreč ne dehaye niti ena merilna postaja onesnaženosti zraka in (ali) padavin, ki bi omogočala oceno misij v gozdove. V slovensko metodo propagiranja gozdov sta torej vključeni dve bioindikacijski metodi:

1. vrednotenje zdravstvenega stanja dreves in
2. vrednotenje epifitske lišajske flore [7].
2 GRADIVO IN METODE DELA

2.1 RASTIŠČE

Pohorje in Kozjak sta najvzročnejša dela geotektonske enote Vzhodnih Alp in sta izražena pretežno iz metamorfnih kamnin, skozi katere so poaekod predrež meglomatske kamnine - tonalitni masivi. Na metamorfni kompleks so bili v tektonskem jarku odloženi terciarni sedimenti sosednje geotektonske enote - Panonskega bazena. Matična kamnina je vir mineralnega dela tal in ima izrazit dolomiti pomen (petrogeni razliki tal), ki ne odloča samo o hitrosti nastajanja in razvoja tal, temveč odreja tudi smer razvoja tal. Magmatska kamnina obravnavanega področja - tonalit - sodi zaradi vsebnosti kremena h kislim magmatskim kamninam (nad 65% SiO₂), metamorfne kamnine razen amfibolita pa lahko uvrstimo med nevtralne kamenine (55-65% SiO₂). Amfibolit z okrog 10% vsebnosti CaO in izviške plasti z do 30% karbonatov (pretežno vezivni del, ki se zlahka izpere) se po kenijski sestavi razlikujejo od kislih in nevtralnih kamnin. Ker pa amfibolit in izviške plasti niso karbonatne kamnine, velja za vse vrste avtomorfnih tal (99% obravnavanega področja - podnebje!) ista evolucijska sestava tal na nekarbonatnih kamninah. Evolucijsko (razvojno) sekvenco sestavljajo litosol, regosol in koluvialna tla iz razreda nenazitih tal z (A)-C-profilom, ranker iz razreda humusno akumulativnih tal z A-C-profilom, distrična rjava tla iz razreda kambičnih tal z A-(B)-C-profilom in rjava opodzožljena tla in podzol iz razreda eluvialno-illuvialnih tal z A-E-B-C-profilom [37]. Glede na vrsto, vplivnost in intenzivnost posameznih reakcij se v procesih mineralizacije in humifikacije oblikujejo tri osnovne oblike humusa - surov humus, sprštenina ali prhлина. Za nastanek humusa je ponemba kemična sestava izhodiščne organske snovi in robni pogoj (vlaga, topota, zračnost, kislost tal, prisotnost baz in s tem povezane vrste, številčnost in dejavnost mikroorganizmov), ki skupaj določajo obliko in različico humusa. Ob določenem razmerju omenjenih dejavnikov se vzpostavi dinamično ravnovesje med depozicijo organske snovi, humifikacijo in mineralizacijo, zato je količina humusa dinamična konstanta. Ker so v obravnavanem področju razširjene dokaj kisle, z bazami siromašne kamnine, je depozicija zaradi tega dejavnika naravnana v smer revnejših oblik humusa, kot sta prhлина in trhлина. Tovrsten proces pa dejansko steče še pri kislem, z alkalinimi in zemeljsko-alkalnimi kationi revnem opadu, kakršnega imajo iglavci. Dejavnost edafona je minimalna in ne omogoča oblikovanja prhinskih sprštenin, ki je sicer običajna oblika humusa v naravnih gorskih bukovih gozdov na siltickih [10].

Severovzhodna Slovenija leži točno na sredi severnega zmernega pasu. Celotna zahodna Evropa zaradi ploskovne neznatnosti nima avtohtonih zračnih mas. Podnebje ostanjke Evrope zato oblikujejo predvsem polarne in subtropske, redkeje tropanske in arktične zračne masice. Razen poleti so za našo področje najpomembnejši prodori polarnega zraka v zahodno Sredozemlje, najpogosteje prek Francije in Neračije. Pri prehodu prek industrijskih področij zahodne
Evrone se zrak onesnaži in iz smeri, ki pripadajo severozahodnemu kvadrantu, prihaja nad Slovenijo. Na 500 mb ploskvi (višina okrog 5500 m) prevladuje v vseh mesečih zahodno in severozahodno strujanje, le julija jugozahodno. Na 850 mb ploskvi (višina okrog 1500 m) je nekoliko drugače; v topli polovici leta prevladuje jugozahodno strujanje, drugače pa prav tako severozahodno oziroma zahodno. Najbolj je onesnažen zrak, ki prihaja iz severne, na drugem mestu je severozahodno in na tretjem zahodna smer [17]. Rastje je odvisno predvsem od podnebja in je funkcija podnebja, saj je pojavljanje rastlinskih vrst in združb odvisno od podnebnih dejavnikov velikih področij in območnih prilagoditev. Pohorje in Kozjak sodita v alpsko florno provinco in ležita na njenem skrajnem jugovzhodnem delu, kjer meji na panonsko (vzhodni rob Kozjaka) in ilirsko florno provinco (vzhodni in južni rob Pohorja) [25].

2.2 VREDNOTENJE ZDRAVSTVENEGA STANJA DREVES

Glavna razlika med slovensko in evropsko metodo je poleg omenjene dodatne bioindikacije še upoštevanje dreves različnih socialnih položajev. Vrednotenje poškodovanosti zajema pri slovenski metodi poleg vladajočega sloja dreves še sloja obvladanih in podstojnih dreves. Tako je omogočeno vrednotenje zdravstvenega stanja vseh, tudi rastiščno manj pomembnih dreves. Evropsko metodo so zasnovali istega leta kot slovensko (1985), upošteva pa samo gospodarsko pomembna drevesa iz nadvladajočega, vladajočega in sovladajočega socialnega položaja. Tako je upoštevana bioindikatorska vrednost tistih dreves, ki so najbolj izpostavljena vplivu imisij, hkrati pa so prevladujoči del drevesneg sloja evropskih gozdovih ekosistemov. Klasifikacijo poškodovanosti, ki so jo uvedli v Nemčiji in sta jo kasneje prevzeli komisije pri ECE UN1 in EEC2, sestavlja pet razredov zmanjšanja asimilacijskega aparata. Komisija pri ECE UN priporoča za začetno klasifikacijo 5- ali 10-odstotne širine razredov osutnosti [1]. Slovenska metoda popisa propadanja gozdov, ki so jo zastavili na IGLG Slovenije, določa za ocenjevanje osutnosti 5-odstotno širino razredov, skupaj 20 razredov z osutnostjo od 0 do 99%.

<table>
<thead>
<tr>
<th>Razred osutnosti</th>
<th>Izguba iglic ali listja</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: brez osutosti</td>
<td>do 10 %</td>
</tr>
<tr>
<td>1: malo osuto</td>
<td>11-25 %</td>
</tr>
<tr>
<td>2: srednje osuto</td>
<td>26-60 %</td>
</tr>
<tr>
<td>3: močno osuto</td>
<td>61-99 %</td>
</tr>
<tr>
<td>4: omdrlo drevo</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Kot merilo za osutost dreves smo uporabili barvne reprodukcije in risbe habitusov štirih stopnje osutosti, ki sta jih predlagala Neumann in Pollanschutz.

1 Economic Commission for Europe of United Nations
2 European Economic Community

2.3 VREDNOTENJE EPITITSKE LIŠAJSKE FLORE

S primerjavo epititske lišajske flore in izmerjenih sedanjih vrednosti koncentracij SO₄²⁻ za posamezne lišajne vrste ugotovili kritične koncentracije, ki ob upoštevanju ekoloških dejavnikov določajo njihovo razširjenost. Nanašajo se na srednje mesečne vrednosti izmerjene v zimskih mesečih, ko dosegajo najvišjo letno raven in so tedy kritične tudi za preživetje lišajev. Lišaji so kazalci onesnaženosti zraka z šeplovim dioksidom, kadar je povprečje v zimskih mesečih 0-170 µg SO₂ v m³ zraka. Najbolj so uporabni v območju od 20 do 100 µg SO₂ v m³ zraka [5].

Občutljivosti posameznih lišajevnih vrst na povprečne zimske koncentracije SO₂ so zdržane v razredih atmosferske čistoče in veljajo za drevesne vrste z zmerno in srednje bogato skorjo. Koncentracije so navedene v µg na m³ zraka:

1. (nad 170) - brez epititov;
2. (150-170) - brez lišajev, le posamične zelene alge;
3. (125-150) - evtrofna vrsta Sclerotiorum chlorococcum;
4. (70-125) - pojavijo se odpornije vrste listastih lišajev - Hypogymnia physodes in Parmelia sulcata se pojavita na dnešnjih dreves;
5. (60-70) - Hypogymnia physodes, P. sulcata sta razširjeni do 2.5 m in več po deblu navzgor, na dnešnjih do 0.5 m višine debla se pojavijo srednje

3 Tako je tudi pri drugih standardih za osutost dreves.
4 Širine razredov so povezane po [16] z indikatorskimi vrstami za slovenski prostor [5].
Zbornik gozdarstva in lesarstva, 40

občutljive vrste: *P. saxatilis, glabratula, P. tiliacea, Parmeliopsis ambiguа, Pertusaria amara:
6. (50-60) - *Parmelia tiliacea, Platismatia glauca, Bryoria fuscescens se razširjene v spodnjem delu debla, *Pseudevernia furfuracea se pojavi tudi visoko v krošnji in na horizontalnih vejah, *Ramalina farinacea in *Evernia prunastri sta omejeni na dnišča;
8. (35-40) - *Usnea subfloridana, *Ramalina fastigiata, *Anaptychia ciliaris (sterilna);
9. (30-35) - *Usnea florida (sterilna), *Anaptychia ciliaris (fertilna);

Ljaji so glede na njihovo občutljivost na SO2 razdelej en v deset (osem) razredov, odprtega razreda brez epifitov do desetega razreda, v katerem so najobčutljivejši ljaji. V slovenskem popisu so na podlagi izkušenj pri popisanju ljajev, ki so ga opravljali slovenski šolari in ališki [5], združili sicer različno občutljive ljajške vrste v tri skupine. Razlika med občutljivostjo ljajških vrst znotraj razredov skorjaških, listastih in grmičastih ljajev je v večini primerov manjša od razlike v občutljivosti med posameznimi morfološkimi tipi ljajev. To spoznanje je omogočilo popis ljajev tudi tistim popisovalcem, ki niso lihenologi. Numerično ovrednotenje popisov ljajške floro smo izvedli po prilagojeni oceni čistosti zraka [6].

\[
IAP_i = \sum_{j=1}^{6} (b_j + c_j) \quad IAP_i = \sum_{i=1}^{6} IAP_i \quad IAP = \frac{\sum_{i=1}^{6} IAP_i}{6}
\]

- \(IAP_i \) indeks atmosferske čistoč je na različnih višinah debla, \(i = 1, 2, 3 \),
- \(IAP_i \) skupni indeks atmosferske čistoč,
- \(S, L, G \) skorjaški, listasti, grmičasti ljaji,
- \(b_j \) številočnost steljki,
- \(c_j \) pokrovnost steljki,
- \(IAP \) povprečna vrednost IAP na popisni ploški,
- \(IAP \) posamezni IAP za \((1, 2, 3, i) \).

Tabela 2: Razredi indeksov atmosferske čistoč je na različnih višinah debla \((i = 1, 2, 3) \) in skupnega indeksa atmosferske čistoč

<table>
<thead>
<tr>
<th>razred</th>
<th>(IAP_i)</th>
<th>(IAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.6-18.0</td>
<td>40.6-54.0</td>
</tr>
<tr>
<td>2</td>
<td>9.1-13.5</td>
<td>27.1-40.5</td>
</tr>
<tr>
<td>3</td>
<td>4.6-9.0</td>
<td>13.6-27.0</td>
</tr>
<tr>
<td>4</td>
<td>1.0-4.5</td>
<td>1.0-13.5</td>
</tr>
<tr>
<td>5</td>
<td>0.0-0.9</td>
<td>0.0-0.9</td>
</tr>
</tbody>
</table>
Lišaji debla ne poraščajo enakomerno, zato jih popišemo na tisti strani, kjer je njihova številčnost in pokrovnost največja. Tudi drevesa iste vrste se po poraščenosti razlikujejo med seboj. Povprečno vrednost indeksa atmosferske čistoče na vzorčni točki dobimo iz vseh šestih individualnih IAP, in IAP.

Lišajska flora ima kot kazalec čistoče oz. onesnaženosti zraka največjo diagnostično vrednost takrat, ko jo opazujemo na drevesnih vrstah, ki rastejo na območju svojega naravnega areala. Zato popisujemo lišaje na tistem oglišču kvadranta, ki je po drevesnem sestavu najbližje potencialnemu (klimatskemu) rastju rastišča vzorčnega sestaja. Kadar to ni mogoče (smrekove monokulture), opišemo oglišče, ki je najbolj primerno za popis lišajev. To pomeni, da so na ploški dovolj stara drevesa, katerih debla niso zastrta z grmovjem in mladjem in na katerih so svetlobne razmere za uspevanje lišajev ugodnejše (redkejši sestroj). V vsakem primeru popišemo stanje epifitskega lišajskega rastja na števih drevesih, ki so sestavni del popisa [3].

Popis lišajskega rastja zajema popis številčnosti in pokrovnosti treh osnovnih morfoloških lišajskih skupin, tj. skorjastiš, listasti in grmičasti. Številčnost in pokrovnost vsakega lišajskega tipa se ocenjuje posebej na treh višinah dreves:

1. koreničnik oz. danišče debla do 0.5 m višine,
2. od 0.5 do 2.5 m višine debla,
3. nad 2.5 m višine debla in v krožnji.

Lišaje ocenjujemo posebej na treh višinah, ker se njihova številčnost in pokrovnost razlikuje glede na višino debla. Vpliv onesnaženega zraka na lišaje je največji v zgornjih delih kroženi vladajočih dreves. Pri prehodu zraka se v skladu z gostotjo in pufrno sposobnostjo asimilacijskih aparatov dreves koncentracija onesnaževalcev manjša in manj vpliva na lišajsko floro spodnjega dela debel in drevesnih dnišč.

Izbira strani debla za popis

Zaradi neenakomernih poraščenosti debel popišemo številčnost in pokrovnost vedno na najbolj poraščeni strani debla. Pri popisu na prvi in drugi višini opazovano površino debla razdelimo na ustrezno število kvadratov, katerih stranica je odvisna od debelino debla. V vsakem izmed teh navideznih kvadratov ocenimo številčnost in pokrovnost vseh treh lišajskih tipov (skorjastiš, listasti in grmičasti) in vplišemo v obrazce povprečje za opazovani višini. Na tretji višini je opazovanje lišajev najtežje. Listaste in grmičaste steljke z lahko opazimo, opazovanje skorjastiš je na bolj hrapavih podlagah težje, vendar z uporabo daljšega izvedljivo. Ocenijo številčnosti in pokrovnosti sta za vse tri opazovane tipe povprečje stanja na deblu in vejah, pri čemer upoštevamo celo višino debla in vej v spodnjih dveh tretinah krožnje. Pri opazovanju vej si pomagamo še z odpadlimi suhimi vejami [3].
Ocenjevanje številčnosti
1 posamezne steljke (do 5 steljek na opazovanem kvadratu).
2 steljke srednje pogoste (5-10 steljek na opazovanem kvadratu).
3 steljke zelo pogoste (nad 10 steljek na opazovanem kvadratu).

Ocenjevanje pokrovnosti
1 ladiji pokrivajo 1-10% površine debel.
2 ladiji pokrivajo 11-50% površine debel in vej.
3 ladiji pokrivajo 51-100% površine debel in vej.

Čeprav lahko podvonimo o aditivnosti obeh znakov, oz. o dobijeni vsoti, pa ne moremo prezreti pomemba številčnosti pri pokrovnosti i (do 10%). Pri tej najmanjši (tudi najpogostejši) pokrovnosti je številčnost dodatni opisni znak, saj lahko le s štejem steljek dopolnimo šečer dokaj širok interval pokrovnosti. Pri razredih pokrovnosti 2 in 3 je opazovanje številčnosti tudi pomembno, saj razreda obsegata 40 oz. 50%. Tu prideta v poštev številčnost 2 in 3 (srednje pogoste in zelo pogoste steljke), s katerima dopolnimo vrednost pokrovnosti.5

Izračun IAP sodi v družino t.i. polemičnih enačb, ki sicer niso rezultat empirične indukcije, vendar jih zaradi pomanjkanja drugačnih spoznanj ranogokej s pridom uporabljajo.6

3 IZIDI

3.1 OGROŽENOST GLAVNIH DREVESNIH VRST VZHODNEGA DELA POHORJA IN KOZJAKA (PO EVROPSKI METODI)

Ker smo pri vseh popisih popisovali ista drevesa, razlike med deleži posameznih razredov poškodovanosti ponazarjajo dejanski razvoj poškodovanosti vzorčnih dreves. Ob vsaki sliki so navedene vrednosti in značilnost \(\chi^2 \), s katerim smo

5 Po srednjeevropski fitocenološki šoli je Braun-Blanquet (1921), izdelal predvsem za potrebe različnih gozdovih ekosistemov 6-stopenjsko lestvico \textit{kombinirane ocene številčnosti in pokrovnosti}. Za potrebe štetljiva v travinjih uporabljajo drugačno vrednotenje pokrovnosti, pri katerem se ocenjuje delež posamezne vrste v celotni pokrovnosti (100%) [12].

6 Npr. izračun višine dimnega dviga iz dimnika, za kar je na voljo več kot trideset polemičnih enačb s precej različnimi rezultati. Pravilna določitev dimnega dviga pa je zelo pomembna, saj je od nje odvisna gradbena višina dimnika in s tem tudi stroški izgradnje.

3.2 PRIMERJAVA OGROŽENOSTI IGLAVCEV NA ZAHODNEM IN VZHODNEM DELU POHORJA TER KOZJAKA (PO SLOVENSKI METODI)

Čeprav lahko razlike v ogroženosti jelovih in smrekovih dreves na zahodnem in vzhodnem delu Pohorja ter Kozjaka razberemo še iz primerjave tabel, smo vseeno naredili ustrezen statistični preizkus - \(\chi^2 \). Zaradi potencialne neusklašenosti med popisovalci obuh primernih področij smo običajno število razredov ogroženosti zvijanšali s 5 na 3. Pri močnejše ogroženi jelki smo združili prva dva in zadnja dva razreda ogroženosti, pri smreki pa zadnje tri razrede. Razponi osutosti novih razredov z združenimi frekvencami in statističnimi kazalci so prikazani v tabelah 3 in 4.
Legenda za slike 1-3:

- omarlo drevo
- močno poškodovano
- srednje poškodovano
- malo poškodovano
- nepoškodovano

Jelka-χ² - test

<table>
<thead>
<tr>
<th>χ²</th>
<th>6,0054</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.f.</td>
<td>9</td>
</tr>
<tr>
<td>P</td>
<td>0,7394 *s.</td>
</tr>
</tbody>
</table>

75 jelovih dreves na 27 traktih

Smreka-χ² - test

<table>
<thead>
<tr>
<th>χ²</th>
<th>28,7614</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.f.</td>
<td>6</td>
</tr>
<tr>
<td>P</td>
<td>0,0001 ***</td>
</tr>
</tbody>
</table>

146 smrekovih dreves na 27 traktih

Bukev-χ² - test

<table>
<thead>
<tr>
<th>χ²</th>
<th>18,7255</th>
</tr>
</thead>
<tbody>
<tr>
<td>d.f.</td>
<td>4</td>
</tr>
<tr>
<td>P</td>
<td>0,0009 ***</td>
</tr>
</tbody>
</table>

65 bukovih dreves na 27 traktih

Slika 1: Razredi poškodovanosti jelovih dreves po evropski metodi popisa propadanja gozdov v l. 1985-1991

Slika 2: Razredi poškodovanosti smrekovih dreves po evropski metodi popisa propadanja gozdov v l. 1985-1991

Slika 3: Razredi poškodovanosti bukovih dreves po evropski metodi popisa propadanja gozdov v l. 1987-1991
Tabela 3: Primerjava ogroženosti jelovih dreves na zahodnem in vzhodnem delu Pohorja in Kozjaka

<table>
<thead>
<tr>
<th>JELKA</th>
<th>1985</th>
<th>1987</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>E</td>
<td>W</td>
</tr>
<tr>
<td>regija</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ostutost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-25%</td>
<td>23</td>
<td>53</td>
<td>9</td>
</tr>
<tr>
<td>26-60%</td>
<td>10</td>
<td>52</td>
<td>9</td>
</tr>
<tr>
<td>nad 60%</td>
<td>39</td>
<td>23</td>
<td>54</td>
</tr>
<tr>
<td>χ^2</td>
<td>31,1879</td>
<td>67,5586</td>
<td>21,5379</td>
</tr>
<tr>
<td>d.f.</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>0,000***</td>
<td>0,000***</td>
<td>0,000***</td>
</tr>
</tbody>
</table>

Tabela 3: Primerjava ogroženosti jelovih dreves na zahodnem in vzhodnem delu Pohorja in Kozjaka

<table>
<thead>
<tr>
<th>SMREKA</th>
<th>1985</th>
<th>1987</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W</td>
<td>E</td>
<td>W</td>
</tr>
<tr>
<td>regija</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ostutost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10%</td>
<td>47</td>
<td>75</td>
<td>16</td>
</tr>
<tr>
<td>11-25%</td>
<td>111</td>
<td>90</td>
<td>83</td>
</tr>
<tr>
<td>nad 25%</td>
<td>55</td>
<td>38</td>
<td>114</td>
</tr>
<tr>
<td>χ^2</td>
<td>11,4940</td>
<td>51,0540</td>
<td>35,8555</td>
</tr>
<tr>
<td>d.f.</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>0,000***</td>
<td>0,000***</td>
<td>0,000***</td>
</tr>
</tbody>
</table>

3.3 VREDNOTENJE POTENCIALNIH KAZALCEV ZDRAVSTVENEGA STANJA DREVES

Tabela 5: Zveza med periodičnim letnim debelinskim prirastkom ig in potencialnimi kazalci zdrazvstvenega stanja dreves (rezultati multiple korelacije).

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>R²</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jelka</td>
<td>0,314</td>
<td>1,42 mm</td>
</tr>
<tr>
<td>Smreka</td>
<td>0,504</td>
<td>1,39 mm</td>
</tr>
<tr>
<td>Bukov</td>
<td>0,231</td>
<td>1,37 mm</td>
</tr>
</tbody>
</table>

Pri jelki smo z modelom, ki vsebuje tri prediktorje, pojasnili 31.4% celotne variabilnosti debelinskega prirastka, kar pomeni dejansko pomembno povezanost. Na prvem mestu je prvi primer drevosa, sledita osutost in dolžina krošnje. Z večanjem prsnega premera linearno narasča debelinski prirastek (premica debelinskega prirastka) oblike b0 = b0 + b1d in je temeljna zakonitost razvoja debelinskega prirastka dreves [24]. Socialni položaj je interkoreliiran s prsnim premerom, zato tudi ni eksplicitni prediktor debelinskega prirastka dreves. Posamezen vpliv na prirastek ima osutost z negativnimi regresijskimi koeficientom. Zadnji statistično značilni prekurzor je dolžina krošnje, ki ima pozitiven
regresijski koeficient, kar pomeni, da z daljšanjem krošnje (vineto je tudi "daljšanje" krošnje s sekundarnimi poganjki) prirastek narašča.

Pri smreki nam je z modelom, ki vsebuje pet prediktorjev uspelo pojasniti 50,4% celotne variabilnosti debelinskega prirastka, kar pomeni visoko povezanost. Na prvem mestu je prvi premer, takoj za njim pa nadmorska višina sestava iz katerega je drevo. Naslednje tri spremenljivke so manj pomembne, a vseeno značilne. To so naklon terena, osutnost in gozdna združba. Nadmorska višina in naklon rastišča imata negativen regresijski koeficient, kar pomeni, da imajo smreka drevsa na višjih nadmorskih višinah in v strmejših legah manjši debelinski prirastek kot na nižjih višinah in položnejšem terenu. Gozdna združba je v našem primeru karakterska spremenljivka, katere vplivi so razvišani iz sukcesivnih parov med posameznimi združbami.

Querco-Luzulo-Fagetum ⇔ *Luzulo-Abieti-Fagetum*
Luzulo-Abieti-Fagetum ⇔ *Galio-Abietetum*
Galio-Abietetum ⇔ *Luzulo sylvaticae-Piceetum*
Luzulo sylvaticae-Piceetum ⇔ *Bazzanio-Piceetum*.

Razlika v debelinskem prirastku prvega para je neznatna, pri drugem paru je pozitivna, kar pomeni večji debelinski prirastek na rastišču *Galio-Abietetum*, pri tretjem in četrtem pa negativna. Zadnji značilni dejavnik, ki vpliva na debelinski prirastek, je osutost, ki ima negativni predznak.

Legenda:

<table>
<thead>
<tr>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Slika 4: Povprečna osutost \overline{y}_i jelovih dreves vseh socialnih položajev z odklonom zaupanja $\pm d_i$.

Osutost sem v skladu z navodili popisa [3] ocenjeval z 20 razredi po 5% izgube asimilacijskega aparata. V literaturi je mogoče najti vrsto priporočenih statističnih postopkov za preverjanje ustreznosti ocen oz. za ugotavljanje odstopanj od "pravilne ocene". Pri tem so posebno zanimiva vrednotenja t.i. standardne ocene ("Sollwert"). Nekateri avtorji imajo za pravilno oceno osutost drevsa kar povprečno oceno osutosti drevsa iz ocen pesameznih ocenjevalcev [23]. Metodološko pravilneje bi bilo seveda vrednotenje odstopanj od dejanske.

Legenda:

<table>
<thead>
<tr>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Slika 5: Povprečna osutost \overline{y}_i smrekovih dreves vseh socialnih položajev z odklonom zaupanja $\pm d_i$.
osutosti, ki bi jo ugotovili neposredno s štetjem manjkajočih iglic, kar pa je težko izvedljivo in zelo zamudno opravilo. Oceno osutosti drevesa sestavlja več spremenljivk, kar lahko zapišemo tudi v obliki enačbe [18].

\[y_i = x_i + a_i b_j + e_i \]

- \(y_i \) ocena osutosti drevesa \(i \), ki ga je ocenil opazovalec \(j \),
- \(x_i \) dejanska osutost (defoliacija) drevesa \(i \), ki jo ugotovimo s štetjem manjkajočih iglic na podrtem drevesu.
- \(a_i \) faktor pričušeni opazovalca, ki je odvisen od njegove pričuščnosti in izkušenj,
- \(b_j \) faktor, ki je odvisen od posebnosti drevesne vrste, vremenskih pogojev in meseca v katerem smo ocenili osutost,
- \(x_i \) sistematična napaka ("bias") popisovalca \(j \),
- \(e_i \) slučajnostna komponenta.

Dejanska osutost \(x_i \) je pozitivno število ali 0, ostali štirje dejavniki pa so lahko pozitivni, 0 ali negativni. Kakovost ocenjevanja povečamo s šolanjem popisovalec v različnih območjih in regijah, kjer se ti seznanijo z različnimi fenotipi opazovanih drevesnih vrst. Na oceno osutosti lahko močno vpliva manjša osvetljenost drevesa v oblačnem vremenu, ko pride do prenizke ocene, zato je treba popisovati v kolikor je mogoče izenačenih razmerah (jasno nebo z običajno vidnostjo). Tudi mesec popisa je pomemben za vrednosti osutosti, posebej ob koncu poletja, ko se začne naravno odpadanje iglic. Slučajnostna komponenta je edini dejavnik, ki se pri izračunu aritmetične sredine ne ohrani, ampak se zaradi tega, ker se porazdeljuje normalno \(\mathcal{N}(0,1) \) sam izniči. Z doslednim delom, zadostnim poznavanjem habitusov posameznih drevesnih vrst in upoštevanjem priemerne časa za ocenjevanje je mogoče prve tri dejavnike ustrezno minimizirati. Ne moremo pa zmanjšati sistematične napake, ker je običajno niti ne poznamo. Ta je lahko večja ali manjša in jo lahko ugotovimo le s kontrolno oceno drugih opazovalec ali še bolje z neposrednim vrednotenjem osutosti.

Pri analizi razlik med osustoto dreves po socialnem položaju so nas zanimale predvsem njihove medsebojne razlike. Pri tem smo zavestno pustili absolutne vrednosti osutosti nekoliko ob strani in postavili v ospredje prav te večje ali manjše razlike med povprečno osustoto dreves po posameznih socialnih položajih. Z ustreznim izborom in razlago izsledkov po matematično-statistični metodi (analizi variance) smo uspeli "odpraviti" tudi tako trdovratno napako, kot je sistematična. Če je naš "bias" pozitiven in so zaradi njega vse ocene previsoke, bo tudi povprečna ocena osutosti previsoka, in sicer natanko za povprečno sistematično napako - \(\bar{e} \). Povprečne ocene osutosti bodo zato enakomerno navidezno višje, vendar bodo njihove medsebojne razlike kljub temu
3.4 POVPREČNA OSUSTOST DREVES NA NEKATERIH RASTIŠČIH

Za značilnost razlike med ekvivalentnimi pari je po Wilcoxonovem testu najvišja dovoljena vrednost manjše vsote rangov pri devetih parih 6, pri šestih parih 5. Vrednosti veljajo za obojestranski test pri 5-odstotnem tveganju. Značilno razliko smo ugotovili samo na gorskih smrekovih, antropogenih in naravnih rastiščih. Ob predpostavki ničelne hipoteze (ni razlik med vzorci) bodo vsote pozitivnih in negativnih rangov enake ali podobne. Večja razlika med vsotama na rastišču Galio-Ahietetum (50%) pa že nakazuje zavračanje ničelne hipoteze.

8 Analiza variance sodi k parametričnim statističnim metodam. Do sklepov o značaju razlik med i, smo priliči ob predpostavki normalnosti porazdělitelce arimetičnih sredin vzorcev (i=1-5). Kljub temu, da populacija dreves, iz katere smo izdelali vzorce, merilo osutosti ni normalno distribuirana, pa se zaradi zalostnega števila enot v vzorci (> 30) i, vsemu porazdeljenejo normalnoi. Povej je v statistiki zelo pomemben in je znan pod imenom "teorem centralne meje" (central limit theorem). Pogoj normalnosti smo dopustno prekršili, ker so vzorci približno enako veliki in ker se populacije enot podobno razlikujejo od normalne porazdelitvene.

9 Za preverjanje razlik med osustjo različnih socialnih položajev poleg opravljeni analizi variance smo uporabili Scheffejevo metodo oz. Tukajjevo metodo ničelne značilne razlike - BISD.

10 Pri povprečnih vrednostih osustosti dreves sa posameznih rastišč velja opozoriti na način določitve povprečja. V izračunu so upoštevani osebni vseh socialnih položajev in vseh drevesnih vrst, ne glede na njihovo rastiščno ali sestojno pomembnost.
Tabela 6: Povprečna osutost dreves na nekaterih rastiščih mariborskega gozdnogospodarskega območja.

<table>
<thead>
<tr>
<th>gozdna združba</th>
<th>št. traktov</th>
<th>y_{1990}</th>
<th>y_{1991}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Querco-Luzulo-Fagetum</td>
<td>9</td>
<td>13.9</td>
<td>15.2</td>
</tr>
<tr>
<td>Luzulo-Abieti-Fagetum</td>
<td>6</td>
<td>16.1</td>
<td>15.8</td>
</tr>
<tr>
<td>Galio-Abietetum</td>
<td>6</td>
<td>23.0</td>
<td>22.4</td>
</tr>
<tr>
<td>Luzulo silvicae-Piceetum</td>
<td>4</td>
<td>20.8</td>
<td>14.5</td>
</tr>
<tr>
<td>Bazzanio-Piceetum</td>
<td>2</td>
<td>16.4</td>
<td>13.3</td>
</tr>
<tr>
<td>predaljsko ozemlje</td>
<td>27</td>
<td>17.6</td>
<td>16.7</td>
</tr>
</tbody>
</table>

Tabela 7: Vsote rangov razlik med povprečno osutostjo dreves l. 1990-1991 na nekaterih rastiščih mariborskega gozdnogospodarskega območja.

<table>
<thead>
<tr>
<th>sintakson</th>
<th>vsota rangov</th>
<th>vsota - rangov</th>
<th>manjša vsota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Querco-Luzulo-Fagetum</td>
<td>24</td>
<td>-21</td>
<td>21 n.s.</td>
</tr>
<tr>
<td>Luzulo-Abieti-Fagetum</td>
<td>10</td>
<td>-11</td>
<td>10 n.s.</td>
</tr>
<tr>
<td>Galio-Abietetum</td>
<td>7</td>
<td>-14</td>
<td>7 n.s.</td>
</tr>
<tr>
<td>"Piceetum"</td>
<td>0</td>
<td>-21</td>
<td>0*</td>
</tr>
</tbody>
</table>

3.5 IZIDI BIOINDIKACIJE Z EPIFITSKIMI LIŠAJI

Slika 6: Razredi indeksov atmosferske čistoče po posameznih drevesnih višinah in za celotno drevo.
Če primerjamo izide opazovanja epifitskih lišajev na vseh treh opazovanih višinah, ugotovimo, da je stanje lišajev najboljše na dnešnih debel (do 0.5 m višine). Tudi na tej višini je lišajno rastje dokaj revno, saj je večina ploskven urščena v razredu 3 in 4, vendar je del ploskven tudi v razredu 2 (11%), kar nakazuje čistejši zrak. Na višini od 0.5 do 2.5 m je lišajsko rastje revnejše, zmanjšal se je delež 3, povečal pa delež 4, (30%) in 5. razreda (7%). Najrevnejše rastje najdemo na višini nad 2.5 m, kjer se delež 5. razreda poveča na 22, delež 4. razreda pa na 41%. Delež v 3. razredu je padel na 33%, v 2. razredu pa na 4%. V 1. razredu, ki označuje najčistejši zrak in dobro razvitko epifitsko lišajsko rastje ni niti ene ploskve ne na posameznih drevesnih višinah, ne na celotnem drevesu.

Posamezne vrednosti IAP na različnih višinah debla (i = 1, 2, 3) so med seboj odvisne, saj na njih v enaki meri vplivajo drevesna vrsta, nadmorska višina sestaja in drugo. Razlike med njimi smo preverili s Friedmanovim testom, ki upošteva njihovo mešebojno korelacijo [29].

\[X^2 = 15.0185 \quad d.f. = 2 \quad P = 0.0000 \quad *** \]

Dobiteni rezultat je statistično značilen (P < 0.1%), zato sklepamo, da vzorci IAPi niso vzeti iz iste populacije in se zato med seboj razlikujejo. Razlike razlike med vzorci IAP pa ne smemo prenašati na lišaje, saj so ti na posamičnih drevesih in ploskvah vedno iz iste populacije, le izračunane vrednosti IAP se na različnih višinah debla med seboj značilno razlikujejo. Centralna vrednost IAP3, ki znača 3.7, je nižja od centralnih vrednosti IAP1 in IAP2, ki znašata 6.5 in 5.8. Pomembno je spoznanje o revnejši lišajski flori nad 2.5 m od tal, ki jo pripisujemo vplivu onesnaženega zraka.

Poraščenost dreves z epifitskimi lišaji smo primerjali na vseh treh opazovanih višinah debla tudi po glavnih drevesnih vrstah (slika 7). Centralna vrednost (mediana) je na vseh treh višinah najvišja pri smreki (8, 8, 6.5), sledita jelka (7, 6, 3) in bukev (5, 5, 3). Razlik v IAP po posameznih vrstah nismo preverjali, saj izvirajo razlike iz različnih fizikalno-kemijskih lasnosti skorje. Vrednosti indeksa so izrazijo nizke (3. razred) in po pričakovanju najvišje pri smreki in jelki. Buken ima že po naravi specifično, največkrat z listastimi in grmičastimi lišaji revnejše epifitsko lišajsko rastje. Centralni vrednosti IAP1 in IAP2 sta pri smreki in bukvi znaki, razlikujeta se le pri jelki. Ločnica med prvo in drugo višino opazovanj se deblu je določena glede na višino sečne osede, ki v kritičnem obdobju varuje lišaje pred vplivom onesnaženega zraka. Razlike med spodnjima višinama rasti smo preverili z Wilcoxonovim testom ekvivalentnih parov11 in pri smrki nismo ugotovili razlike (P = 0.76). Pri jelki je razlika značilna (P = 0.02), pri bukvi pa smo ugotovili razliko z uporabo testa predznakov (P = 0.02). V oblih primerih je centralna vrednost IAP višja ne dnešnih debel. Razlika med srednjim in zgornjim pasom (nad 2.5 m) je

11 Uporabili smo dvostranski test.
4 RAZPRAVA

Drevesa vladaočih socialnih položajev so izpostavljena primarnim koncentracijam onesnaževalec, ki dosegajo zgornje dele krošnji nadvladaočih in vladaočih ter vrhnji del sovladaočih dreves. Pri prehajanju skozi krošnje dreves se koncentracije škodljivih snovi zmanjšujejo zaradi absorpcije v asimilacijskih organih dreves. Pri tem je prečiščevalna sposobnost iglavev večja, ker prvi obdržijo asimilacijski aparati tudi pozimi, ko je onesnaženost zraka večja. Tudi količina padavin v nastanjanje mgle vplivata na poškodovanost dreves v vladaočem drevesnem sloju. Zadreževalna sposobnost padavin v krošnjah dreves (interrecepcija) je posebej velika pri iglavicah. Izsledki o vplivnosti socialnega položaja na osastost se skladojo z ugotovitvami iz nemških smrekovih in jeležnih gozdov [34], po katerih naraščata osastost in porumenelost smrekovih in jelovih dreves tem močnejše, čim bolj je krošnja drevesa izpostavljena vplivom onesnaževanja. Do znakih ugotovitev so prišli v rahlo ogroženih sestojih širšega imisjskega območja TE Šoštanj (Mislinja) [13]. Tam so imisjski vplivi blagji kot v ožjem območju termoelektrarne in so najmočnejše poškodovana12 ravno (najvišja) drevesa prvega socialnega razreda. Podobne, a blagje ohlike so težnje v sestojih pod vplivom daljinskega onesnaževanja ozračja tako v alpskem (Pokljuka), kot v dinarskem fitogeografskem območju (Kočeveko Rog) [13].

12 Avtor je ugotavjal poškodovanost smrekovih dreves le na podlagi osusteti krošnje, ki jo je takoj kot mi določil na 5 % natančno.
Oiglčenost smrek so ugotovljali že l. 1959 v Schwarzwaldu in jih že takrat razdelili na gusto in dokaj gusto, manj gusto, dokaj redko in redko oiglčene. Taka razdelitev se je po dvajsetih letih uveljavila pri popisovanju zdravstvenega stanja drevov v Evropi. Osutost drevov je bila po vsej verjetnosti že takrat običajen pojav, vendar ni bila tako razširjena kot danes. Schmid-Haas ugotovlja [32]:

- Osutost se je v zadnjih letih drastično povečala, ob čemer se prirastek drev in drastično znižal, oz. je ostal isti pri večini drevesnih vrst.
- Osutost in prirastek posameznih drev in se v korelaciji na večini smrkovalnih in jelovih rastišč, pri čemer je korelacija včasih nizka, včasih pa visoka.
- Dejanska (sedanja) osutost je v korelaciji ne samo z zadnjim periodičnim prirastkom, ampak tudi s periodičnimi prirastki iz prejšnjih desetletnih obdobj.

Te ugotovitve se dajo razložiti z dvema hipotezama, in sicer:

I. hipoteza

\[\text{osutost} \rightarrow \text{prirastek} \]

II. hipoteza

\[\begin{align*}
\text{osutost} & \quad \text{vitalnost} \\
\text{vitalnost} \quad & \quad \text{prirastek}
\end{align*} \]

Drugih hipotez predvideva obstoj tretjega dejavnika (dejavnikov), ki je povzročitelj spremembe osutosti drevov in spremembe prirastka. To lastnost posameznega drevov lahko poimenujemo življenjsko sposobnost (vitalnost) in jo proučujemo v obečenih ekosistemih, tako da spremljamo razvoj posameznega primera ("case study"). Povprečna osutost drevov je kljub kompleksnosti problema in še ne dovolji jasne razmejitivosti med vzorkom in posledico vseeno relevantna. Če namreč spremljamo povprečno osutost drevov v dališčem časovnem zaporedju, nam spremembe osutosti drevov kot bioindikacijske spremenljivke nakazujejo delovanje ekoloških dejavnikov na drevosa.

Vrednotenje osutosti (poškodovanosti) z deleži dreves v posameznem popisnem letu temelji na absolutnih vrednostih, ki pa nimajo neposredne informativne vrednosti. Osutost dreves smo začeli spremljati v času, ko so drevesa že bila bolj ali manj osuta, in smo potem primerjali z neuspešnimi. Ker povprečne normalne osutosti dreves, ki ni odvisna samo od drevesnih vrst, ampak tudi od genotipov (ploskovnost, visečvejetnost) [15] in fenotipov (socialni položaj, dolžina košnje) [34, 26] drevesnih vrst, niti ne poznamo, nam prestane le ugotavljanje spremembe osutosti v časovnih obdobjih. Če ovrednotimo spremembo osutosti z deleži dreves v razredih poškodovanosti v posameznih popisnih letih, spremembe deležev dreves ponazarjajo vplivnost kompleksa ekoloških dejavnikov, v katerega je nujno vključena tudi onesnaženost ozračja. Metoda je nezadostna pri majhnih spremembah osutosti, pri katerih ne vemo, ali so spremembe dejansko merodajne ali pa samo navidezne (slučajne). V takšnih razmerah smo primorani uporabiti kvantitativne metode, s katerimi lahko objektivno ugotovimo značaj spremembe osutosti v popisnih letih. V obeh primerih je nujno ugotavljanje osutosti pri istih drevesih, saj je le razlika med prejšnjim, zdajšnjim samostojnim pravilno merilo za presojo in oceno. Povedano ne velja samo za gozdna drevesa, ampak za vse organizme, ki jih uporabljamo v biokidnake sneme. Drevesa vladajočih socialnih položajev so bolj občutljiva in zato bolj napovedujejo spremembe v gozdni sistemih. Imajo tudi odločilno cenotski pomen (edifikatorji), saj njihova lesna zaloga dosega 85% lesne zaloge celotnega sestaja [31, 20, 36]. Indikatorsko vrednost vladajočih dreves potrjuje tudi možnost primerjave dobljenih podatkov o vitalnosti gozdov s stanjem gozdov v deležah EGS.

Kritične kislinske kapacitete tal so opredeljene kot kvantitativne ocene depozicije enega ali več onesnaževalcev, ki po dosedanjih spoznanjih ne vplivajo kvarno na obseg in učinkovitost specifičnih občutljivih ekosistemskih prvin (hranil). Za srednje globoka gozda tla na granitih in gnajnih (manj kot 5% biotita) na Šedskem, znaša ocena kritične kapacitete 0.2-0.5 kmol (H⁺) na ha letno. Temu ustreza količina 3-8 kg S (skupnega S) na ha letno [28]. Podobno so tudi za N

Mokra depozicija S je v Sloveniji med 20 in 40 kg na ha (v Avstriji in Nemčiji med 10 in 20 kg), depozicija N v obliki NH₄⁺- in NH₃-ionov pa je med 10 in 20 kg na ha (v Avstriji med 5 in 20 kg). Po poročilu WHO so občutljivi ekosistemi ogroženi, če celotna depozicija N presega 30 kg na ha. Na podlagi podatkov iz katastra emisije SO₂ za Evropsko unijo in teritorije EMEP so za 1. 1985 izračunali, da je znašala celotna depozicija žvepla v Sloveniji okrog 30 kg na ha. Čeprav gre za celotno depozicijo S, se izračun po modelu dokaj dobro ujema z rezultati meritev v Sloveniji, ki zajemajo mokri del depozicije. Primerjava med emisijo in izračunano celotno depozicijo žvepla (po modelu) kaže, da v Sloveniji emitiramo večjo količino S, kakor jo prejmemo v obliki depozita, velik del S pa se po zraku prenese prek meja [2]. Depozicija žvepla v Sloveniji (30 kg na ha), je dosti večja od kritične kapacitete za gozdno talo in gnaju (3-8 kg na ha). Obremenjo je depozicija N (15 kg na ha) na zgornji meji kritične kapacitete tal za N. Količnost depozita se pri prahalanju skozi krošnje dreves zmanjšuje, vendar so količine, ki dospejo do gozdnih tal, še vedno precej višje od kritične kislinske kapacitete tal. Vrednosti presegajo kapaciteto tal na tonalitu in gnaju, ki zavzemata 45% obravnovanega področja. Pomanjkanje hranih kot posledica acidifikacije je verjetni primarni vzrok za občasno povečanje osutosti smrekovih dreves na naravnih in nekdaj bukovih rastlišč, ki so v Al-puferskem območju (pH 4.2-3.0).

Posledica putiranja disociranih kislin v iglicah in listih je transport ionov prek korenin v tla. Vrsta kisline, ki nastane v neposredni bližini korenin, je odvisna od kemijske reakcije tal; v carbonatom pufernem območju se tvori ogljikova kisлина, v Al- in Fe-puferskem območju pa močnejše kisline. To ima za rastlino še dodatne posledice, ki nastanejo pri ionski izmenjavi, saj se korenine ne zaključijo samo neposredno prek tal, ampak tudi zaradi kislin, ki nastanejo pri ionski izmenjavi v apoplastu korenin. Ker se celična stena s svojimi kislinskimi skupinami obnaša kot ionski izmenjevalec, se zaksobanje korenin odraža enako kot zaksobanje tal v zmanjševanju adsorpcije Ca²⁺ in povečanju sorpcije H⁺.
Pod vplivom kisle depozicije lahko tudi na rastiščih v izmejevalnem (pH 5.0-4.2) in silikatnem pažemščem območju (pH 6.2-5.0), torej na nezakristaljenih tleh, prihaja do zakisevanja - poskodovanja korenin. Poškodbe se najprej pojavijo na mikorizni in kratkih (mikrokristalnih) koreninah in omogočijo vdor drugih škodljivih snov in različnih patogenih organizmov. Ti sekundarni stresni dejavniki se od mesta vdora širijo po nemikoriznih koreninah in dosežejo olesenele čele korenin z dobro vidnimi poškodbami [38, 21]. Aluminijska toksičnost ali širše kislinska strupenost je zaradi puferske zmožnosti v apoplastih acidotolerantnih vrst, kakršne so gospodarske drevesne vrste, dolgotrajen proces. Drevesa razvijajo v mladosti dolgo razvejanj in globok koreninski sistem (tudi smrek). Proti napredujočemu zakisevanju v globljih horizontalnih tal se branijo z razvijanjem površinskega sistema močno razvitih korenin, ki so se razvile iz nekdaj stranskih korenin. V drugem primeru, ko so bili spodnji horizonti zakisani že pred nastankom sedanjega sestaja (izprana tla), pa so korenine od vsega začetka razvijajo v višjih horizontalnih in globljih rati ne dosežejo. Zmožnost prestavljanja koreninskih sistemov v Ah- in O-horizonte je najbolj razvita pri smreki, pri v tem preknaša vse druge acidotolerantne drevesne vrste. Poškodovanost nadzemnih organov je po tej hipotezi sekundarnega značaja in izvira iz zmanjšane vitalnosti dreves zaradi pomanjkanja hranil, strupenosti disociiranih kislin in posledic sekundarnih stresnih dejavnikov [38, 39].

Zbornik gozdarstva in lesarstva, 40

Za razlaganje vzrokov propadanja gozlov je bioindikacija onesnaženosti zraka z epifitskimi lišaji era izmed preizkušenih metod diferencialne diagnostike. Višje vrednosti IAP, ki smo jih dobili na višini do 0,5 m od tal so značilne za onesnaženo okolje in so posledica zaščite dreves, ki s krešnjami prestreza onesnaževalce v zraku. Po drugi strani vpliva na to tudi puferski vpliv tal in zaščita s srečno odejo v zimskem času, čeprav so na tej višini svetlobne razmere v gozdu lahko neustrezne za razvoj epifitske lišajne floro. Zaradi postopnega razvoja epifitskega rastja, lišaje na tej višini na zelo starih drevesih izriče našo, kar prav tako znača vrednosti indeksa. Ker z naraščanjem višine opazovanja na deblu vrednost IAP upada, si to razlagamo z večjim vplivom onesnaženega zraka, deloma pa tudi s slabšo razvitostjo listastih in grmjaščih lišajev v krošnjah mladih dreves. Višje vrednosti indeksa atmosferske čistoče so pri bukvi posledica slabših fizikalno-kemijskih lastnosti bukove skorje in odtska onesnaženih padavin po deblu. Vrednost IAP se določa kot povpreček opazovanj na istih drevesih, kar omogoča ugotavljanje spremembe stanja pri ponovnih popisih. Zaradi raznorauma počasne rasti lišajev lahko pričakujejo spremembe vrednosti IAP v dveh do treh letih.

Bioindikacija na podlagi vsebnosti žvepla v enoletnih in dvoletnih iglicah sovpada z vrednostmi lišajne bioindikacije [19]. L 1990 so bile na obravnavanem področju na štirih točkah 16 x 16 kilometrske osnovne bioindikacijske mreže analizirane vsebnosti žvepla, ki področje uvrščajo v tretji vsebnostni razred (izmed štirih). Tudi glede na relativne vsebnostne razrede so vzorci s Pohorja in Kožjaka v četrtem razredu (od petih).

plodnost gozdnih rastišč [38, 10], v tem pogledu je nekarbonatna kemijska sestava kamnin na Pohorju in Kozjaku posebnost Slovenije in Balkana.

Poleg žvelepih in duškovih oksidov je ozon nadaljnji dokazani frotoksični onesnaževalnički dejavniki. Nastaja v procesu fotoaksidacije iz naravnih in umetnih ogljikovidovih. V neonesnaženih področjih koncentracije ozona povečujejo z

13 Mišljena so gosta jelova mladja in goče, ki jih običajno niso pospeševali s sadnjo. Mladova so bila v tistih časih na Pohorju še gosta, ker je bila številčnost in prestrost rastlinejede dvajadi takrat mnogo manjša.
nadmorsko višino, ko se z večanjem gostote svetlobnega toka stopnjuje tudi intenzivnost fotosintetizacijskih procesov. Koncentracije ozona v spodnji troposferi so spremenljive in so odvisne od stratosferskih fluktacij, intenzivnosti sevanja, količine atmosferskih antropo- in biogenih ogljikovodikov in emisij dušikovih oksidov. S pojavo maših lahko hlaplivih organskih spojin v ozračju se je povečala količina fitotoksčnih oksidacijskih produktov, ki prav tako narašča z nadmorsko višino [14]. V gozdovih Schwarzwelda so izmerili višje vrednosti (tokskičnih) atmosferskih halegeniziranih ogljikovodikov kot v neposredni okolici urbanih središč. Te sekundarne spojine lahko ob povečanem UV-sevanju sprožijo razkroj fotosintetetskih barv. Najpogostešje C₂-klozoogljičive raztopine 1,1,1-trifluoretan se v zraku oksidirajo v dobro znani herbicid - trikloracetno višino (TCA), ki so jo našli v smrekovih iglicah gorskih gozdov. Navzočnost TCA na sorazmerno neonesnaženih področjih je zanesljivo dokazana, vendar je za relevantnost polskod treba analizirati atmosfersko-kemične poti njenega nastajanja [14].

Pri razlaganju vzrokov za poškodovanost jelovih gozdov se spiramo na korenentno hipotezo o zakiševanju tal, spiranju hranil in strupenosti aluminija [38, 39]. Zakisovanie tal, povezano z naraščajočo sušnostjo, je najverjetnejši razlog za osutost jel na Pohorju in Kozjaku. Sušnost v sedemdesetih letih je v smrekovih gozdovih Vogežev poleg povečane osutnosti povzročila tudi zmanjšanje rasti sestojev, ki je bilo zajocičenje na z minerali bogatih tleh. Podobna opazovanje zadnjih let izvirajo iz Nemčije, kjer so celo oblikovali hipotezo o razvajenosti ("Verwöhnungsstrophe") [22]. Večjo osutost smrekovih sestojev na hranilničnih tleh kot na desaturiranih tleh smo v sušnih letih ugotovili tudi mi, razlagamo pa jo z antropogeniziranostjo smrekovih sestojev. V ekstremnih ekoloških razmerah pride do izraza tisti dejavnik, na katerega se ekstremnost nanaša, v danih razmerah je bilo to pomanjkanje vlage v tleh na rastišče Lusulo sylvatica-Pseud (zakon minimuma). V smrekovih monokulturah je kapaciteta tal za vodo na distričnih kambisolih s trhlinasto prhilo manjša od kapacitete distričnih kambisolov s trhlinasto spremenjeno, kakršni so razviti na naravnih rastiščih gorskih in visokogorskih bukovih gozdov.

5 SUMMARY

In the year 1985 started the inventory of forest decline in Slovenia, which was with its sampling grid of 4000 x 4000m connected to the European system of sample forests. The Slovene method of forest decline evaluation is created similarly as the ECE UN and EEC methods - so, that it is possible to make inferences on the cause of forest decline. The principal difference between the Slovene and the two European methods (both European methods are identical in their obligatory part) is in consideration of trees of different social classes. According to the Slovene method, beside the dominant trees also the dominated and the supressed trees are included in the evaluation of injuries.
In this way, the judgement about the state of health of all trees is made possible - also of the trees of smaller growing site significance. The European method was established in the same year as the Slovene method (1985) and it only takes into consideration the economically important trees - the trees of predominant, dominant and co-dominant social class. Thus only the bioindication value of trees which are the most exposed to the impact of emissions and which represent the dominant part of the tree canopy in the forest ecosystems of Central Europe is taken into account. The Slovene method is more comprehensive than the European one, because it includes description of a number of additional signs of tree vitality and numerous characteristics of growing sites and forest stands. And beside the tree bioindication the lichen bioindication is also included in the Slovene method. The lichens are a vegetable group with the longest tradition of indirect indication of air pollution. Not even one Analytical station for measurements of air pollution and (or) pollution of precipitations - which would make evaluation of emissions in forests possible - is in operation on the forest inventory sample plots in the studied area. The epiphytic lichens are used for definition of possible causes of forest decline, because they are very sensitive to pollution, while any other ecophysiological stress only has a slight influence on them.

The life ability, vitality and state of health were always evaluated on the same trees. So it was possible to observe the changing response of the bioindicators - the forest trees to the changes in their ecosystems and forest associations. The loss of needles proved to be an important factor of the state of health by both conifer species - the fir and the spruce. The injuries of trees of the dominant class are worse than the injuries of trees of the dominated and suppressed class. This can be explained with the greater exposure of the crowns of predominant, dominant and co-dominant trees to air pollution and with their already reached physiological age. The average loss of needles of the trees on the studied growing sites in the period 1990 - 1991 was compared and the results showed, that the needle loss in general remained unchanged. A significant difference has only been found for the mountain growing sites of spruce (the natural ones as well as the anthropogene ones), where the loss of needles in 1991 was in average smaller than in 1990. The results of lichen bioindication verify that the effects of air pollution grow smaller from the top of tree crown towards the ground. On the higher parts of tree trunks and in the lower parts of tree crowns namely less lichens were found than on the lower parts of the trunks and near the ground.

Spatial divergence of the bioindication results of both methods led us into study of ecological factors of different importance. Because by fir and spruce trees the influence of needle loss on the increment of trees was discovered - or in other words the relation between needle loss and tree increment, which can as well be indirect - we tried to find the causes of loss of the needles. Thus the hypotheses about forest decline would be confirmed. The loss of needles by firs in Central Europe and in Slovenia had unquestionably appeared before the loss of needles by spruce was first observed and is also in average greater than the
needle loss by spruce trees. No significant change in average needle loss in fir stands for the period 1990 - 1991 could be found with our investigation. On the other hand, a change was found in case of spruce stands. We tried to explain the obtained results with the data about growing sites and forest stands gathered in the forest decline inventory, yet that has not led us to the necessary knowledge and to formation of conclusions. By chance it has been possible to do the synthesis of conclusions after the data about precipitations from the nearby weather station and the results of analyses of forest soil on non-carbonate parental rock (as in the studied area) were studied. The loss of needles by fir and spruce trees is most probably a consequence of the joint action of pollution stress, mineral nutrition disturbances, the biological and the complex climatic stress. From our point of view, the hypothesis about acidification of soil, leaching of nutrients and aluminium toxicity (the Ulrich's hypothesis) could be the key to the forest decline in the studied area.

The danger of pollution for trees in the eastern part of Pohorje and Kožjak was also compared to the pollution danger for trees in the western part and it was found, that the two of them are different. In the period 1985 - 1991, the danger for fir and spruce trees growing nearer to the Sostanj Steam Power Plant (TEŠ) in the western part) was greater than the danger for the more distant trees. The concentrations of air pollutants are higher in the vicinity of TEŠ (Zavodnje) and because of that the conifers are more at risk there. The results of analyses of sulphur contents in spruce needles and lichens from north-west Styria indicate more than average contents of harmful substances from polluted air. Because of the vicinity of TEŠ, the emissions of pollutants in forest ecosystems (and all other ecosystems too) are much greater than anywhere else in Slovenia, and that is also reflected in the worse state of health in the forests of this area.

6 VIRI

Belec Z.: Novejše ugotovitve o obsegu ...

Zbornik gozdarstva in lesarstva, 40

