ENERGY-EFFICIENT TIMBER BUILDINGS

Manja Kitek Kuzman, Martina Zbašnik-Senegačnik

ABSTRACT

The choice of materials for a building with high energy efficiency becomes much more important and strategies for reducing the use of primary energy for the production of materials and components becomes key. The positive trend towards wooden construction is dictated by international guidelines, where a wooden building is an important starting point, not only for low-energy, but also low-emission building with exceptional health and safety aspects. In Europe, the most comprehensive and widely used is a concept of ultra-low energy house, more precisely, the passive house concept.

Most Slovenian buildings combine contemporary styling with a degree of energy efficiency that comes close to passive house standards. It is widely recognised that the Slovenian construction industry is relatively advanced in the field of low energy buildings. In the light of the growing importance of energy-efficient building methods, it could be said that timber passive house would play an increasingly important role in the future.

Key words: timber construction, energy efficiency, passive house, sustainable development, Slovenia.

1. INTRODUCTION

Timber as a material for load bearing construction represents a future challenge for residential and public buildings. Being a natural raw material, timber represents one of the best choices for energy efficient construction since it also functions as a material with good thermal properties if compared to other construction materials. In addition, it plays an important role in reduction of the CO₂ emissions (Natterer, 2009), has good mechanical properties and ensures a comfortable indoor living climate. Timber construction has better thermal properties than conventional brick or concrete construction methods, even with smaller wall thickness. Considering the growing importance of energy-efficient building methods, timber construction will play an increasingly important role in the future.

The dominating methods of timber construction in Slovenia include a timber-frame construction, balloon and massive construction (Figure 1).

Currently, most Slovenian companies offer houses with timber-frame construction. Timber panel construction has had its own production in Slovenia for more than 35 years. Over the past thirty years, timber construction has undergone major changes. The most important (Žegarac Leskova and Premrov, 2013) are the following introduced changes: transition from on-site construction to prefabrication in a
factory, transition from elementary measures to modular building and development from a single-panel to a macro-panel wall prefabricated panel system. All of these greatly improve the speed of building.

In timber-frame buildings the basic vertical load bearing elements are panel walls consisting of load bearing timber frames and sheathing boards. Dependant on the wall dimensions, one can distinguish between single-panel and macro-panel wall systems. The single-panel was based on individual smaller elements in dimensions of 1.30 m (1.25 m) x 2.5 m to 2.65 m (Figure 2a). The height of the wall elements was meeting the height of the floor and the length of the ceiling elements the span of the bridged field. The macro-panel system was developed from the single-panel system in the last two decades and represents an important milestone in panel timber frame building. The aim of the system is that whole wall assemblies, including windows and doors, are totally constructed in a horizontal plane in a factory from where they are transported to the building-site. Prefabricated timber-frame walls as main vertical bearing capacity elements, of usually typical dimensions with a width of 1.250 m and a height of 2.5–2.6 m, are composed of a timber frame and sheets of board-material fixed by mechanical fasteners, usually staples, to one or both sides of the timber frame (Figure 2c).

Between the timber studs and girders a thermal insulation material is inserted the thickness of which depends on the type of external wall. Composition of wall elements is in detail presented in Table 1 (Premrov and Žegarac L., 2013).

![Figure 2. a.) Single-panel system (TFCL2); b.) Renovated single-panel system (TFCL 3), c.) Timber-frame wall element with I-studs (TF 3).](image)

Table 1. Composition of analysed macro-panel (TF 3) and single-panel (TFCL 2, 3) timber-frame wall elements.

<table>
<thead>
<tr>
<th>TF</th>
<th>TFCL 2</th>
<th>TFCL 3 – renovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>material</td>
<td>d[mm]</td>
<td>material</td>
</tr>
<tr>
<td>rough coating</td>
<td>10</td>
<td>wooden planks</td>
</tr>
<tr>
<td>wood fibreboard</td>
<td>60</td>
<td>/</td>
</tr>
<tr>
<td>/</td>
<td>/</td>
<td>TSS*** /open air gaps /</td>
</tr>
<tr>
<td>cellulose fibre / TF*</td>
<td>360</td>
<td>TSS*** /open air gaps / TF*</td>
</tr>
<tr>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>mineral wool / TF*</td>
<td>80</td>
<td>/</td>
</tr>
<tr>
<td>OSB**</td>
<td>15</td>
<td>aluminium foil</td>
</tr>
<tr>
<td>gypsum plasterboard</td>
<td>12.5</td>
<td>particleboard</td>
</tr>
<tr>
<td>/</td>
<td>/</td>
<td>gypsum plasterboard</td>
</tr>
<tr>
<td>total thickness [mm]</td>
<td>457.5</td>
<td>total thickness [mm]</td>
</tr>
<tr>
<td>U_{wall}-value [W/(m²K)]</td>
<td>0.102</td>
<td>U_{wall}-value [W/(m²K)]</td>
</tr>
</tbody>
</table>

* timber frame, ** oriented strand board, *** timber sub-structure.

Because of the reduction of energy losses in the newly built residential objects, the first measure introduced by the producers was gradual reduction of the thermal transmittance of the external wall elements, resulting in the increase of the timber-frame wall elements thickness, thus enabling
thicker thermal insulation installment. Detailed composition of the older single panel external wall elements construction, as well as newer macro-panel system, are explicitly presented in the Table 1, with additional graphic presentation in Figure 2.

Therefore, all prefabricated timber framed objects set up before the year 1992 are considered as a fund needing energy efficient renovation till the year 2020. The latter refers to the wide-ranging package on climate change adopted by European Union, the overall 20-20-20 targets, which are binding for buildings as well. Therefore, energy performance of existing buildings has to be improved through a complex process of energy efficient renovation, likewise the sustainable new construction of energy-efficient buildings with the use of renewables has to be performed.

2. ENERGY-EFFICIENT BUILDINGS

Researching energy efficiency of buildings is not a matter of the last decade only, since the first intensive studies related to energy and buildings were already carried out in the seventies and eighties of the last century. Many studies focusing on the research of specific parameters influencing energy performance of buildings, such as Johnson et.al. (1984) and Steadman and Brown (1987) have been performed since then. From the existing research findings we summarize that the process of defining the optimal model of a building is very complex. The most important parameters influencing energy-performance of buildings are: location of the building and climate data for the specific location, orientation of the building, properties of installed materials, such as timber, glass, insulation, boards etc., building design (shape factor, length-to-width ratio, window-to-wall area ratio, building’s envelope properties, windows properties), selection of active technical systems. According to the Slovene legislative framework, particularly to the Energy Act, the system of energy performance certification is defined in Rules on the methodology of construction and issuance of building energy certificates (2009). On the basis of rules, the classification of energy-efficient houses was carried (Table 2).

Table 2. Classification of energy-efficient houses on the basis of “Rules on the methodology of construction and issuance of building energy certificates”.

<table>
<thead>
<tr>
<th>Degree / Classification in accordance with the rules</th>
<th>Generally used classification in practice</th>
<th>Variation of execution</th>
<th>(Q_h^*) (kWh/m²a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class C</td>
<td>minimal requirements for low-energy house</td>
<td>classical prefabricated construction, conventional heating system, contemporary windows (doors), no central ventilation system</td>
<td>35 – 50 (60)</td>
</tr>
<tr>
<td>Class B2</td>
<td>low-energy house</td>
<td>thermally improved building envelope conventional heating system, contemporary windows (doors), central ventilation system</td>
<td>25 – 35</td>
</tr>
<tr>
<td>Class B1</td>
<td>very low-energy house</td>
<td>thermally improved building envelope + HRV** + improved U-value of windows (doors)</td>
<td>15 – 25</td>
</tr>
<tr>
<td>Class A2</td>
<td>passive house</td>
<td>additionally thermally improved building envelope + HRV + improved U-value of windows (doors)</td>
<td>10 – 15</td>
</tr>
<tr>
<td>Class A1</td>
<td>passive house</td>
<td>additionally thermally improved building envelope + HRV + improved U-value of windows (doors)</td>
<td>≤ 10</td>
</tr>
</tbody>
</table>

* specific annual heating demand, **heat recovery ventilation

Table clearly shows that energy efficient objects can be constructed only by adequate combination of external envelope efficient insulation and high quality glazing installation. Respecting climate change conditions and the subsequent European directions related to energy performance of
buildings, which are forcing the building industry into constructing a nearly zero energy house by 2020, searching for the optimal model of an energy-efficient house has therefore become of major importance.

2.1 Passive house

In Europe, the most comprehensive and widely used concept of ultra-low energy, more precisely, the passive house concept was developed by Dr. Wolfgang Feist of the Passive House Institute (Feist, 1998, Galvin and Sunikka-Blank, 2012). It sets forth the maximum permissible energy consumption for the heating of the building and limits the total primary energy consumption. In its essence, it is an upgrade of the low-energy house standard. Passive houses are buildings that ensure a comfortable in-door climate during summer and winter without requiring a conventional heat distribution system (Feist, 1998). The passive house standard means that the space heating peak load should not exceed 10 W/m² living area in order to use supply air heating. The resulting space heating demand will approximately be 15 kWh/m² but will vary depending on climate (Feist, 2005). The term ‘passive house’ refers to a construction standard that can be met through a variety of technologies, designs and materials such as solid (masonry, concrete, and aerated concrete) and wood structures.

The following considerations are particularly important when choosing the material and the construction type: the construction type should be standardized; the construction system should be based on natural and environmentally-friendly materials; the thermal envelope should meet the standards of a passive house; the construction should be wind-tight, airtight and diffusion open.

In order to design and implement a high-quality passive house project, attention should be paid to the materials used. The choice depends on personal preferences, in particular on the cost. There is a growing movement especially in Germany, Austria and Switzerland to build passive houses that are based on energy conservation measures and an efficient mechanical ventilation system with heat recovery. Over the past few years, the number of different types passive houses (Figure 3) has been seen a continuous increase in Europe.

![Figure 3: Different types of passive houses: a) Single family passive house; b) Multy storey timber frame passive house; c) Industrial building. Passive houses built in Slovenia: d) Commercial building built (Ekoproduct d.o.o.); e) Kindergarten (Jelovica d.d.); f) Single-family house (Marles hiše Maribor d.o.o.)](image-url)
The greatest challenge facing civil engineers, wood science and technology engineers and architects today is how mitigate and adapt to climate change. They have recently focused their efforts on finding environmentally-friendly solutions and construction methods that bolster energy efficiency and thus reduce the environmental burden. The choice of a construction material is one of the most important decision with long-term consequences for the owner of the building (Johnson, 1990). The analysis by Kitek Kuzman et al. (2013) showed that wood as a renewable raw material is one of the best choices for energy-efficient construction because it is also a good thermal insulator, has good mechanical properties, and ensures a comfortable indoor climate.

2.1.1. Certificates

In recent decades several methodologies have been developed to assess the quality of buildings: in the UK there is BREEAM (BRE Environmental Assessment Method) in France HQE (Haute Qualité Environnementale), the USA has LEED (Leadership in Energy and Environmental Design), Germany has DGNB (Deutsche Gessellschaft für Nachhaltiges Bauen) and so on. These certificates demonstrate the environmental and energy indicators of buildings, as well as the economic, socio-cultural and technical aspects of construction. For those buildings in the highest energy class, for instance passive houses, special systems of certification have been developed: in Switzerland the Minergie P and in Germany the Passive House Certificate. In some countries (Germany, Austria and Switzerland), the two certificates are the basis for allocating subsidies for passive houses. Within the profession they are highly valued – as a good promotional tool representing a market advantage.

In the Slovenian market there are already a large number of components bearing the Passive House Certificate. Components with this certificate are most commonly manufactured by large foreign firms that have representatives in Slovenia, but also by a number of Slovenian firms that is growing each year. Currently there are few houses in Slovenia built with the Passive House Certificate and with the Minergie P certificate.

3. CONCLUSION

Energy efficiency is essential in the efforts to achieve a 20% reduction of primary power consumption by 2020. It is widely recognized that the potential of energy saving in buildings is large. Considering the tendencies of energy production and price, it is becoming urgent to reduce energy consumption in buildings. Most Slovenian buildings combine contemporary styling with a degree of energy efficiency that comes close to passive house standards. It is widely recognised that the Slovenian construction industry is advanced in the field of low energy buildings. In the light of the growing importance of energy-efficient building methods, it could be said that timber passive house would play an increasingly important role in the future.

ACKNOWLEDGEMENTS

The authors would like to thank the Slovenian Research Agency for financial support within the program P4-0015 and Ministry of Education, Science and Sport RS in the frame of the WoodWisdom-Net+ project W3B Wood Believe-Societal perceptions of the forest-based sector and its products towards a sustainable society.

REFERENCES

Authors:
Assist. Prof. Manja Kitek Kuzman, PhD., Assoc. Prof. Martina Zbašnik Senegačnik, PhD., University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Ljubljana, Slovenia