ENERGIJSKA BILANČA CELKA

Ljubljana - december 1985
ENERGIJSKA BILANCA
CELKA

Boštjan ANKO

Ljubljana, december 1985
ENERGIJSKA BILANCA CELKA

1. Naročnik:
Občinske raziskovalne skupnosti:
Dravograd, Radlje ob Dravi, Ravne
na Koroškem, Slovenj Gradec

2. Raziskovalna organizacija:
BF - TOZD za gozdarstvo

3. Nosilec naloge:
doc. dr. Boštjan Anko

4. Sodelavci:
Tone Modic, dipl.ing.gozd.
(LESNA TOK gozdarstvo RADLJE),
Martin Mazgan, ing.agr.
(KZ Drava VUZENICA)
ENGERIJSKA BILANCA CELKA
Boštjan Anko

I Z V L E Č E K

Gorska kmetija (celek) predstavlja enega najpreprostejših kultur-
nih sistemov v prostoru. Zato je izjemno primerna za razvoj prou-
čevanja snovnih in energijskih tokov kulturne krajeine kot take.
V nalogi smo se osredotočili na študij energijskih tokov celka.
Te raziskave so pomembne ne le za teorijo, ampak tudi za razvija-
nje novih konceptov usmerjanja gospodarjenja na teh kmetijah.

Raziskava je potrdila globoke spremembe v ekoloških karakteristi-
kah osnovnih rab tal (nagib, ekspozicija), 0.4 odstotni izkor-
stek vse prispele sončne energije, velike razlike v energijski
bilanci med posameznimi rabami tal in izjemno vlogo gozda v ce-
lotnem pretoku energije. Zazenkrat so glede na umetne energijske
vhode vse rabe tal še rentabilne.

ENERGY BALANCE OF A MOUNTAIN FARM
Boštjan Anko

A B S T R A C T

The mountain farm (enclosure) represents one of the simplest cul-
tural systems in the space. Therefore it is exceptionally well
suited to development of research of matter and energy flows in
the cultural landscape as such. The study dealt with energy flows
of the enclosure. This research is significant not only from
theoretical but also from the practical point of view.

The study established profound changes in the ecologic characte-
ristics of the basic land uses (slope, azimuth), 0.4 percent con-
version rate of all the solar energy, great differences in energy
balance among individual land uses and exceptional importance of
the forest in the general energy flow. As far as artificial ener-
gy inputs are concerned the enclosure still has a positive energy
balance.
VSEBINA

PREDGOVOR .. 1

1 UVOD ... 3

2 PROBLEM IN DELOVNE HIPOTEZE 6

 2.1 Opredelitev pojma energijska bilanca 9

3 METODOLOGIJA DELA .. 11

4 VZORČNA KMETIJA ... 13

 4.1 Ljudje ... 14

 4.2 Površina in zemljiške kategorije 15

 4.3 Reliefe značilnosti ... 18

 4.4 Ekspozicija .. 23

 4.5 Osončenje in temperatura .. 25

 4.6 Splošen oris gospodarskega obraza 31

 4.7 Prilagojenost naravnim danostim - razvoj 34

5 ENERGIJSKI TOKOVI GOSPODARSKEGA OBRATA CELKA 47

 5.1 Naravni vhodi energije .. 49

 5.1.1 Energija sončnega obsevanja 49

 5.2 Umetni vhodi energije ... 54

 5.2.1 Strojno delo .. 54

 5.2.1.1 Naftni pogon ... 55

 5.2.1.2 Električni pogon 60

 5.2.2 Snovni vhodi .. 65

 5.2.3 Tuje delo ... 68

 5.2.4 Nabava in amortizacija osnovnih sredstev 70

 5.2.5 Nakupi, potrebni za vzdrževanje gospodinjstva in gospodarskega obraza 72
<table>
<thead>
<tr>
<th>Stran</th>
<th>Naslov</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>5.2.6 Krediti, subvencije</td>
</tr>
<tr>
<td>76</td>
<td>5.3 Upori</td>
</tr>
<tr>
<td>80</td>
<td>5.4 Proizvodnja</td>
</tr>
<tr>
<td>80</td>
<td>5.4.1 Proizvodnja gozda</td>
</tr>
<tr>
<td>81</td>
<td>5.4.2 Proizvodnja pašnika</td>
</tr>
<tr>
<td>83</td>
<td>5.4.3 Proizvodnja travnika</td>
</tr>
<tr>
<td>86</td>
<td>5.4.5 Proizvodnja njive</td>
</tr>
<tr>
<td>87</td>
<td>5.4.6 Proizvodnja ostalih površin</td>
</tr>
<tr>
<td>91</td>
<td>5.4.7 Analiza rastlinske proizvodnje</td>
</tr>
<tr>
<td>94</td>
<td>5.5 Energijski izhodi</td>
</tr>
<tr>
<td>97</td>
<td>6 ENERGIJSKA BILANCA</td>
</tr>
<tr>
<td>97</td>
<td>6.1 Energijska bilanca glavnih ekosistemov</td>
</tr>
<tr>
<td>104</td>
<td>6.2 Energijska bilanca vsega celka</td>
</tr>
<tr>
<td>106</td>
<td>7 ZAKLJUČKI IN PRIPOROČILA</td>
</tr>
<tr>
<td>108</td>
<td>8 PRILOGE</td>
</tr>
<tr>
<td>147</td>
<td>9 VIRI</td>
</tr>
<tr>
<td>Stev.</td>
<td>Naslov</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Potek srednjih mesečnih temperatur 1982 - 1984 - s teoretičnim potekom sončnega obsevanja in trajanja obsevanja</td>
</tr>
<tr>
<td>Stev.</td>
<td>Naslov</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Vzorčna kmetija</td>
</tr>
<tr>
<td>2.</td>
<td>Prikaz celka s štiridesetometerskimi višinskimi pasovi</td>
</tr>
<tr>
<td>3.</td>
<td>Pregled nagibov po nagibnih razredih</td>
</tr>
<tr>
<td>4.</td>
<td>Pregled površin po ekspoziciji</td>
</tr>
<tr>
<td>5.</td>
<td>Pregled teoretičnega letnega osončenja površin na celiku</td>
</tr>
<tr>
<td>6.</td>
<td>Rabe tal 1825. leta</td>
</tr>
<tr>
<td>7.</td>
<td>Rabe tal 1880. leta</td>
</tr>
<tr>
<td>8.</td>
<td>Rabe tal 1982. leta</td>
</tr>
<tr>
<td>9.</td>
<td>Karta vseh površin na celiku z nagibom pod 50% in letnim osončenjem nad 800 kJ/cm²</td>
</tr>
<tr>
<td>10.</td>
<td>Karta vseh površin na celiku z nagibom pod 50% in letnim osončenjem nad 800 kJ/cm², ki so bile leta 1825 pod gozdom</td>
</tr>
<tr>
<td>Štev.</td>
<td>Naslov</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Zemljiška struktura obravnavanega celka</td>
</tr>
<tr>
<td>2.</td>
<td>Dejanske površine, obdelane v sezioni 1983/84</td>
</tr>
<tr>
<td>3.</td>
<td>Pregled površin celka po višinskih pasovih (spodnje meje vsebovane v razredu)</td>
</tr>
<tr>
<td>4.</td>
<td>Pregled nagibov po nagibnih razredih</td>
</tr>
<tr>
<td>5.</td>
<td>Pregled površin celka po ekspoziciji</td>
</tr>
<tr>
<td>6.</td>
<td>Pregled teoretičnega letnega osnovenja površin (spodnje meje vsebovane v razredu)</td>
</tr>
<tr>
<td>9.</td>
<td>Opremljenost s stroji na obravnavanem celku</td>
</tr>
<tr>
<td>10.</td>
<td>Razmerja rab tal v mejah današnjega celka - 1825 - 1880 - 1982</td>
</tr>
<tr>
<td>11.</td>
<td>Glavne rabe tal - naravni vhodi energije</td>
</tr>
<tr>
<td>12.</td>
<td>Pregled meritev cirkumglobalnega obsevanja 1983/84</td>
</tr>
<tr>
<td>13.</td>
<td>Glavne rabe tal - vhodi energije v obliki strojnega dela</td>
</tr>
<tr>
<td>14.</td>
<td>Glavne rabe tal - količine vloženega strojnega dela (nafta) na ha (v kWh)</td>
</tr>
<tr>
<td>15.</td>
<td>Amortizacija (naftnih) strojev kot energijski vhod</td>
</tr>
<tr>
<td>16.</td>
<td>Delo in amortizacija (naftnih) strojev kot energijski vhod</td>
</tr>
<tr>
<td>17.</td>
<td>Glavne rabe tal - količine vloženega strojnega dela (elektrika) na ha (v kWh)</td>
</tr>
<tr>
<td>18.</td>
<td>Amortizacija (električnih) strojev kot energijski vhod</td>
</tr>
<tr>
<td>19.</td>
<td>Delo in amortizacija električnih strojev kot energijski vhod</td>
</tr>
<tr>
<td>20.</td>
<td>Amortizacija strojnih priključkov in drugih naprav kot energijski vhod</td>
</tr>
<tr>
<td>21.</td>
<td>Celokupni energijski vhodi iz strojnega dela</td>
</tr>
<tr>
<td>22.</td>
<td>Količine in vrste snovnih vhodov po glavnih rabah tal (v kg)</td>
</tr>
<tr>
<td>Štev.</td>
<td>Naslov</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>23.</td>
<td>Celokupni energijski vhodi iz snovnih vlaganj</td>
</tr>
<tr>
<td>24.</td>
<td>Vlaganje energije v obiliki človeškega in živalskega dela</td>
</tr>
<tr>
<td>25.</td>
<td>Glavne rabe tal - vlaganje energije v obliki tujega dela</td>
</tr>
<tr>
<td>26.</td>
<td>Nakupi osnovnih sredstev kot energijski vhodi</td>
</tr>
<tr>
<td>27.</td>
<td>Amortizacija stavb in cest kot energijski vhod</td>
</tr>
<tr>
<td>28.</td>
<td>Energijski vhodi za vzdrževanje gospodinjstva in gospodarstva</td>
</tr>
<tr>
<td>29.</td>
<td>Odplačani krediti in izplačane premije kot energijski vhodi</td>
</tr>
<tr>
<td>30.</td>
<td>Letna proizvodnja rastlinske snovi na celku</td>
</tr>
<tr>
<td>31.</td>
<td>Proizvodnja travinj 1983</td>
</tr>
<tr>
<td>32.</td>
<td>Proizvodnja travnika</td>
</tr>
<tr>
<td>33.</td>
<td>Proizvodnja rži 1983</td>
</tr>
<tr>
<td>34.</td>
<td>Proizvodnja koruze 1983</td>
</tr>
<tr>
<td>35.</td>
<td>Proizvodnja okopavin</td>
</tr>
<tr>
<td>36.</td>
<td>Analiza rastlinske proizvodnje na celku</td>
</tr>
<tr>
<td>37.</td>
<td>Pregled energijskih izhodov</td>
</tr>
<tr>
<td>38.</td>
<td>Skupna energijska bilanca vhodov</td>
</tr>
<tr>
<td>39.</td>
<td>Skupna energijska bilanca vhodov na enoto površine</td>
</tr>
<tr>
<td>40.</td>
<td>Energijska bilanca posameznih ekosistemov</td>
</tr>
<tr>
<td>41.</td>
<td>Energijska učinkovitost glavnih rab tal in njihov delež v rastlinski proizvodnji celka</td>
</tr>
<tr>
<td>42.</td>
<td>Skupna energijska bilanca celka (v primerjavi z naravnimi vhodi)</td>
</tr>
<tr>
<td>Štev.</td>
<td>Naslov</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>Dnevnik posestva</td>
</tr>
<tr>
<td>1</td>
<td>Gozd - naravni vhodi energije</td>
</tr>
<tr>
<td>2</td>
<td>Pašnik - naravni vhodi energije</td>
</tr>
<tr>
<td>3</td>
<td>Travnik - naravni vhodi energije</td>
</tr>
<tr>
<td>4</td>
<td>Njiva - naravni vhodi energije</td>
</tr>
<tr>
<td>5</td>
<td>Ostalo - naravni vhodi energije</td>
</tr>
<tr>
<td>6</td>
<td>Gozd - vlaganje energije v obiliki strojnega dela</td>
</tr>
<tr>
<td>7</td>
<td>Travnik - vlaganje energije v obiliki strojnega dela</td>
</tr>
<tr>
<td>8</td>
<td>Njiva - vlaganje energije v obiliki strojnega dela</td>
</tr>
<tr>
<td>9</td>
<td>Ostalo - vlaganje energije v obiliki strojnega dela</td>
</tr>
<tr>
<td>10</td>
<td>Pašnik - vlaganje energije v obiliki snovi</td>
</tr>
<tr>
<td>11</td>
<td>Travnik - vlaganje energije v obiliki snovi</td>
</tr>
<tr>
<td>12</td>
<td>Njiva - vlaganje energije v obiliki snovi</td>
</tr>
<tr>
<td>13</td>
<td>Ostalo - vlaganje energije v obiliki snovi</td>
</tr>
<tr>
<td>14</td>
<td>Gozd - vlaganje energije v obiliki živega dela</td>
</tr>
<tr>
<td>15</td>
<td>Pašnik - vlaganje energije v obiliki živega dela</td>
</tr>
<tr>
<td>16</td>
<td>Travnik - vlaganje energije v obiliki živega dela</td>
</tr>
<tr>
<td>17</td>
<td>Njiva - vlaganje energije v obiliki živega dela</td>
</tr>
<tr>
<td>18</td>
<td>Ostalo - vlaganje energije v obiliki živega dela</td>
</tr>
</tbody>
</table>
PREDGOVOR

Kadarkoli govorimo o dobri ali slabi letini, ne pomislimo, da je prav ta od nekdaj uporabljeni pojem pravzaprav izraz za razmerje med vloženim trudom in tistim, kar je zemlja posredno ali neposredno vrnila.

Še več: že s svojim izvorom beseda letina označuje, da gre tudi za časovno opredeljen pojem. Letina predstavlja obračun med vloženim (kar je bilo močno stalno) in pridobljenim - v toku ene proizvodne dobe - poletja (leta v ožjem ali širšem pomenu bese-de).

Bile so slabe letine in slabše in kmet je živel slabo in slabše. Želo zgodaj je že moral opaziti, da neka njiva "da" več kot druga, da neka kulturna rastlina bolje povrne trud kot druga, vendar mu je nuja fevdalne samooskrbe preprečevala, da bi ta zapalžanja upošteval odločneje.

Da so vse to posebni primeri energijske bilance, najbrž kmet ni premišljeval, je pa to podzavestno cutil in tudi upošteval. Energijska bilanca je bila brez dvoma eden pomembnih dejavnikov pri oblikovanju naše krajine. Ob mnogih drugih dejavnikih in danostih je prav ona najbolj očitno črtala meje gozdu, pašniku, njiv, vinogradu itn.

V sodobno pojmovanem kmetijstvu naj bi energijska bilanca igrala še posebej pomembno vlogo: odločila naj bi o prednostih kmetijskih območij, panogah, kulturah - ne nazadnje tudi o perspektivah in razvoju posameznih kmetij.

žal energijska bilanca v usmeritvah kmetijstva te vloge ni odigrala. Na njen pomen zopet opozarjata energijska kriza in krajinjska ekologija - obe imata vzporednice že v davni preteklosti: energijska kriza v lakotah, ki so sledile slabim letinam - prav lakota predstavlja najelementarnejšo obliko enerjijske krize,
krajinska ekologija pa v ostrem opazovanju, s katerim je naš prednik oblikoval in izoblikoval naš včerajšnji prostor.

Krajinskoekološki pogled na energijsko bilanco potemtakem ne pomeni nečesa revolucionarno novega – razen če je to že odkrivanje starih modrosti samo po sebi?
1 UVOD

Krajina je sestavljen ekološki sistem, ki ga lahko označimo kot prostorski izraz funkcionalnega sklopa ekosistemov in nji-hovega okolja, ki je sicer odprt, vendar sposoben, da se do neke mere samoregulira. Od sosednjih se krajinski sistem loči po zgradbi in delovanju. Prav zgradba in delovanje pa sta osnovna predmeta proučevanja krajinske ekologije.

Medtem, ko so delovne metode proučevanja krajinske zgradbe zaradi njene navidezne in sorazmerne stabilnosti razmeroma enostavne in zadovoljivo razvite, pa je več nejasnega in nerešene-ga v zvezi z delovanjem krajine. Neredko se celo pojavlja vprašanje, kaj delovanje krajine sploh je. Temu je krivo predvsem pomanjkanje biološke perspektive v tradicionalno geografsko ori-entirani krajinski ekologiji.

Če skladno z uvodno definicijo krajino obravnavamo kot živo tvorbo - ekološki sistem, potem tudi pri njej - podobno kot pri po-sameznih ekosistemih - obravnavamo tokove (žive) snovi in energe-gije kot osnovne vidike njenega delovanja. Ti tokovi pojasnjujejo njeno funkcionalno bistvo in razlike med posameznimi krajinskim-ti tipi.

Z odkrivanjem vse manjših delcev od molekule in atoma navzdol smo se resda dokopali do poznavanja marsikatere zakonitosti - zlasti na področju zgradbe sveta okrog nas, le redko pa so nam ta spoznanja služila za neposredno reševanje problemov, ki so se nakopili med človekom in naravo.

Zanimanje za podrobnosti je usodno odvračalo naš interes od kompleksnih procesov okrog nas. Naenkrat smo spoznali, da je naše na-ravno okolje ogroženo ali celo uničeno, ne da bi se zavedli kdaj, kako in zakaj se je to sploh zgodilo.

Kompleksnost problemov zahteva kompleksnost v njihovi analizi in
reševanju.

Dragocenost krajinskoekološke analize okolja je prav v tem, da navaja na sistemsko obravnavanje stanj in procesov, ki jih brez celostnega pogleda ne moremo niti opredeliti, kaj šele reševati.

Tokovi energije omogočajo presenetljivo jasno razumevanje tesne povezanosti biološkega, družbeno-ekonomskega in tehnološkega - treh glavnih sfer, ki odločilno vplivajo na človekov obstoj v danem prostoru in času.

Spleti omenjenih treh sfer v sodobnih kulturnih (eko)sistemih postajajo izredno zapleteni in nepregledni. Poleg tega je sistemski način njihovega obravnavanja sorazmerno nov in neizdeban. Zahteva nove miselne modele in njim prilagojeno bazo podatkov.

Podobno kot je ekologija dobila nov zagon s pričetkom sistemskega študija delovanja ekosistemov, se bo tudi krajinska ekologija lahko polno (in koristno) uveljavila s sistemskim študijem zgradbe in delovanja posameznih krajinskih tipov. Vzorcev takega študija pa skorajda ni.

Sistemsko proučevanje delovanja posameznih ekosistemov se je pričelo na najpreprostejših primerih. Podobno je bilo tudi pri krajinskoekološkem proučevanju treba pričeti pri najpreprostejših krajinskih tipih oz. modelih, kakršen je npr. celek (prim. Anko, 1983). Celek kot (donaedavna) osnovna ekološka in socialno-
ekonomska celica dovolj razširjenega krajinskega tipa predstavlja to krajino v malem — z vsemi zanjo značilnimi ekosistemi in tokovi snovi in energije. S funkcionalno jasno opredeljeno zgradbo in sorazmerno preglednimi tokovi snovi in energije, celo tudi danes predstavlja dragocen objekt za razvijanje raziskovalnih metod pri študiju kompleksnejših krajinskih sistemov.
2 PROBLEM IN DELOVNE HIPOTEZE

Ne glede na stopnjo razvitosti je kmetijska proizvodnja vselej usmerjena proizvodnja organske snovi na prvi in drugi trofični stopnji, tj. proizvodnja primarnih producentov - rastlin in konsumentov - domačih živali.

Razlika med starejšimi in sodobnimi polindustrijskimi načini kmetijske proizvodnje je predvsem:

- v razmerju med proizvodnjo na prvi in drugi trofični stopnji, v korist slednje (večje zahteve po beljakovinski hrani) in
- v povečanih količinah v kmetijsko proizvodnjo vlagane energije (fosilne, električne itn.). V deželah z moderno razvitim kmetijstvom je količina te umetno vložene energije že enaka deležu naravne (sončne) energije (Blaxter, 1974, str. 402).

Sodobna orientacija kmetijstva na energetsko zahtevne oblike pridelovanja hrane vodi v slopo ulico številne programe za intenziviranje kmetijske proizvodnje - v svetu pa tudi pri nas. Pri moderni farmski reji govedi npr. že vlagamo nekajkrat več energije kot pa jo da končni proizvod. Spoznanje, da fosilna energija ni le draga, ampak tudi izčrpljiva, narekuje nujnost sprememb v taki orientiranosti kmetijske proizvodnje.

Ob skokovitem naraščanju cen (fosilne) energije dolgoročna ekonomska analiza rentabilnosti in perspektivnosti neke kmetijske proizvodnje ne more biti več dovolj zanesljiva. Mnogo objektivnejše in zanesljivejše rezultate si lahko obetamo od analize energijske bilance ta proizvodnje.

Celek je verjetno zadnji od naših pomembnejših kulturnih sistemov, ki je ohranil pozitivno energetsko bilanco do komaj manjšega časa. Stoletja dolgo je predstavljal v nekem smislu tudi z energetskega vidika praktično "zaprt" kulturni ekosistem, ne-
odvisen od zunanjih enerigijskih vhodov ali vlaganj: sončna ener-
gija fiksirana s fotosintezo na površini, ki jo je ena družina
še lahko obdelala, je zadostovala človeku in domači živali za
preživetje in vnovično obdelovanje zemlje - krog je bil sklenjen.
Trgovine praktično ni bilo, edini energijski odtok so predstav-
ljale dajatve gospodski.

Kot tak predstavlja celek s teoretičnega vidika izredno zanimiv
model energijsko avtarkičnega gospodarstva - zlasti zanimiv kot
izhodiščno stanje pri iskanju alternativ za prihodnost - ne le
njega samega, ampak proizvodnje hrane nasploh.

Struktura in tekstura kulturnih ekosistemov (njiva, travnik, paš-
nik, gozd) kot nosilcev določenih funkcij (razne oblike fotosin-
teze) znotraj celca sta stoletja ustrezali človekovim potrebam v
dokaj stabilnih naravnih in družbenoekonomskih prilikah.

Od kod potem sedanja kriza celca? Naravne prilike se nikakor ni-
so spremenile. S prehodom na tržno gospodarstvo in spremenjenim
družbenim položajem kmeta so se spremenili družbenoekonomski po-
goji za obstoj celca. Te spremembe nujno vplivajo tudi na pro-
storsko preoblikovanje strukture, delno tudi teksture celca. Za-
enkrat bolj ali manj spontano in neusmerjeno, v prihodnje pa naj
bi ta proces vse bolj usmerjala tudi znanstvena spoznanja, ki
naj bi vsaj delno nadomestila tipanje in umikanje kognitivnega
pristopa, ki je izoblikoval naš ruralni prostor. Tudi v tem je
energijska analiza celca lahko odlično vodilo.

Poleg omenjenega teoretskega pomena naj bi postala energijska bi-
lanca osnovni kriterij pri odločitvah o (pre)usmerjanju proizvod-
nje hribovskih kmetij; pomagala naj bi poiskati vsaj osnovna iz-
hodišča za določanje rentabilnosti in perspektivnosti posameznih
vrst kmetijske proizvodne na celku, dala pa naj bi tudi konkret-
ne napotke za prostorsko prestrukturiranje zemljiških kultur z
ozirom na (energijsko) najperspektivnejšo vrsto proizvodnje - ob
Namen pričujoče študije je zato dvojen:

1. Z identifikacijo, količinsko in kakovostno opredelitvijo energijskih tokov - sestavnih delov pretoka energije - prispevati k teoriji krajinskoekoloških proučevanj.

2. Z uvajanjem energijske bilance kot novega kriterija v presojah o rentabilnosti in perspektivnosti posameznih vrst kmetijske proizvodnje prispevati k reševanju sodobne problematike višinskih kmetij.
2.1 OPREDELITEV POJMA ENERGIJSKA BILANCA

To preprosto a mnogokrat spregledano resnico smo za naravne ekosisteme še nekako pripravljeni sprejeti, ker so njihove prostore in časovne meje sorazmerno lahko opredeljive. Teže je z dojemanjem tokov energije v kulturnih ekosistemih, kjer so prostore in časovne meje slabše izražene. Prav zato smo za študij kulturnega sistema izbrali celek.

Za boljše razumevanje pojma energijske bilance vzemimo tri primere istega celka v treh različnih časovnih obdobjih:

1. Gozdnno prakrajino, v kakršni so se celki razvili, označuje velika snovna zaprtost in sorazmerno počasen preток energije; le majhen del v rastlinski snovi vezane energije je namenjen prehrani višjih živali in večina energije zapušča sistem v obliki toplotne energije, ki se sprošča ob razgrajevalnih procesih.

2. Avtarkični celek fevdalnega časa je v snovnem pogledu še vedno precej zaprt, v energetskem pogledu pa domala izključno odvisen od sončne energije. Ta se s fotosintezo spreminja v kemično energijo (človeške in živalske) hrane. Človek in domača žival potemtakem izrineta večino nekdanjih konsumentov z druge trofične stopnje, hkrati pa (s svojo respiracijo) zmanjšata tudi vlogo razgrajevalcev. Zmanjša se tudi delež toplotne energije, ki v končni fazi zapušča (eko)sistem celka – vsaj za tisti del kemične energije, ki zapušča kmetijo v obliki dajatev, da bi zgorel nekje drugod, morda še za tisto
malo, kar je zajeta trgovina. Energijska bilanca tega obrata je prav tako nič.

Gornji trije primeri istega prostora v treh različnih stopnjah razvoja krajine opozarjajo, da se ob nespremenjenem rezultatu (= nič) energijski tokovi vendarle spreminjajo, in sicer:

- v količinskem pogledu - ob konstantnem deležu energije sončnega obsevanja se močno večajo umetni vložki energije (nafta, elektrika, razni izdelki in materiali, ki so povzročili energijski strošek drugod);

- v kakovostnem pogledu s tem, da se veča hitrost pretoka energije in delež kemične energije, ki v obliki organske snovi zapušča sistem.

S teoretskega vidika se potemtakem energijska bilanca kulturnega ekosistema (celka) ukvarja predvsem s količinskimi in kakovostnimi spremembami v pretoku energije, medtem ko nas s praktičnega vidika zlasti zanima razmerje med količino vložene in (za prodajo ali lastno rabo) pridobljene energije - za posamezne kulture, parcele ali gospodarske dejavnosti (npr. usmeritev v prirejo mleka ali mesa) sploh.

Oba ta vidika energijske bilance ekološko-ekonomskega sistema sta tesno povezana. V pričujoči nalogi je zlasti poudarjen drugi vidik.
3 METODOLOGIJA DELA

Naloga je bila zasnovana na naslednjih že omenjenih predpostavkah:
1. celek je sorazmerno enostaven kulturno-krajinski sistem s še preglednimi tokovi snovi in energije
2. pod pojmom "energijska bilanca" razumemo razmerje med vloženo in v ustrezni obliki (ali vrsti) pridobljeno energijo
3. glavni elementi za izračun energijske bilance so:
 a) vhodi - vse oblike energije, ki sodeluje v proizvodnji do-ločenega pridelka ali pri vzdrževanju kmetije nasploh
 b) notranji tokovi - potrebni predvsem za premeščanje snovi in energije v sistemu, ki v svojem bistvu ni naraven
 c) izhodi - vse gospodarsko pomembne oblike (kemične) energije, ki zapuščajo posamezne ekosisteme ali celotno kmetijo
4. osnovne enote proizvodnje na kmetiji so deli (parcele) konkretnih ekosistemov (gozd, pašnik, travnik, njiva) oz. živinska črada.

V ta namen smo na izbrani kmetiji eno gospodarsko sezono opazovali in beležili vse energijske vhode, izhode in notranje tokove - za vsako proizvodno enoto (parcelo, živali).

Opazovalno obdobje je trajalo od začetka maja do konca aprila prihodnjega leta. Predpostavljali smo namreč, da je za študij energijske bilance primerneje obravnavati čas vegetacijske dobe skupaj z obdobjem, v katerem se večji del v vegetacijski dobi fiksirane energije neposredno potroši ali zapusti (eko) sistem, kot pa čas koledarskega leta, ki je v tem pogledu manj homogen.

Velikost posameznih vhodov in izhodov itd. smo ugotavljali:

1. z meritvami (tehtanje živine, gnoja, pridelkov, izmera parcel, meritve temperatur s termohigrografom, meritve cirkumglobalnega sončnega obsevanja z Bellanijevim piranometrom)

2. z vzorčenjem (proizvodnja travina)

3. teoretično (izračun teoretičnega sončnega obsevanja s pomočjo računalniškega modela reliefa - DMR s celico 50 x 50 m in tabelarnih vrednosti)

4. s cenitvami (npr. organska snov v gozdu na osnovi gozdarskih podatkov o lesni zalogi)

5. s tekočim izpoldnjevanjem posebnega, za ta namen sestavljenega vprašalnika oz. obrazcev, ki so sestavni del te naloge.

Delo je pokazalo, da drugače zastavljena vprašanja za odgovore zahtevajo tudi drugačne podatke, kakršnih pa doslej pri proučevanju gorskih kmetij nismo zajemali. Prav zaradi pestrosti teh podatkov na njihovo zbiranje nismo bili najbolje pripravljeni. Sorazmerno skromen obseg naloge ni dopuščal, da bi v delo vključili še kakšnega kmetijskega strokovnjaka in vsaj še strojnika oz. fizika. Določene težave je povzročala tudi dokajšnja natančnost, s katero smo skušali podatke zajemati. To, in še omenjeni skromni obseg naloge je ob veliki oddaljenosti vzorčne kmetije dokajkrat povzročalo nemajhne težave.

Kljub temu menimo, da je naloga uspela - predvsem kot pilotna študija, ki naj bi vzpodbudila še več takih raziskav, ki naj bi končno prerasle v standardno analizo kmečkega gospodarskega obrata.
Kmetija, ki smo jo izbrali za proučevanje, leži v občini Radlje ob Dravi, na pobočjih Kozjaka na levem bregu Drave.

Zaradi narave številnih podatkov, ki so v študiji navedeni, bo kmetija ostala anonimna - kot je v takih primerih navada - njen naslov pa se nahaja pri avtorju študije in pri Ekonomskem centru Maribor, Inštitut za gospodarski, socialni in prostorski razvoj, Ravne na Koroškem, ki koordinira izvajanje raziskovalnega programa občinskih raziskovalnih skupnosti - naročnica.

Narava dela zahteva dobro sodelovanje, predvsem pa popolno obojestransko zaupanje med gospodarjem in gospodinjo analizirane kmetije na eni strani in raziskovalci oz. popisovalci na drugi strani. Z ozirom na pionirski značaj naloge so se nam zato gornji kriteriji zdeli pomembnejši od siceršnje reprezentativnosti kmetije, ki je večja od povprečja v širši okolici, predvsem pa izrazito napredno usmerjena in verjetno tudi nadpovprečno dobro opremljena s stroji in drugimi delovnimi pomočki.
4 VZORČNA KMETIJA

Kmetija, ki smo jo izbrali za proučevanje, leži v občini Radlje ob Dravi, na pobočjih Kozjaka na levem bregu Drave.

Zaradi narave številnih podatkov, ki so v študiji navedeni, bo kmetija ostala anonimna - kot je v takih primerih navada - njen naslov pa se nahaja pri avtorju študije in pri Ekonomskem centru Maribor, Inštitut za gospodarski, socialni in prostorski razvoj, Ravne na Koroškem, ki koordinira izvajanje raziskovalnega programa občinskih raziskovalnih skupnosti - naročnic.

Narava dela zahteva dobro sodelovanje, predvsem pa popolno oboje-stransko zaupanje med gospodarjem in gospodinjo analizirane kmetije na eni strani in raziskovalci oz. popisovalci na drugi strani. Z ozirom na pionirski značaj naloge so se nam zato gornji kriteriji zdeli pomembnejši od siceršnje reprezentativnosti kmetije, ki je večja od povprečja v širši okolici, predvsem pa izrazito napredno usmerjena in verjetno tudi nadpovprečno dobro opremljena s stroji in drugimi delovnimi pripomočki.
4.1 LJUDJE

Na kmetiji stalno žive:

1. gospodar, 37 let
2. gospodinja, 32 let
3. dva sinova (osnovnošolca), 14 in 13 let
4. gospodarjeva mati, 65 let.

Harmonija treh generacij dela vtis idealnega stanja, ki se odraža tudi v delovnem uspehu kmetije. Vse kaže, da v takem vzdušju ne bo težav z nasledstvom.

Zaenkrat primanjkuje delovnih rok - zlasti za težja dela, zato si razmeroma pogosto pomagajo s tujo delovno silo.
4.2 POVRŠINA IN ZEMLJIŠKE KATEGORIJE

Točen izračun razmerja energetskih vhodov in izhodov zahteva tudi, da natanko določimo površine posameznih pašnikov, travnikov, njiv, gozdnih parcel itd.

S planimetriranjem parcel na karti smo dobili površine, ki so prikazane v tabeli št. 1.

Razlike med katastrskim stanjem, ki je morda še veljalo v povojnih letih, in današnjim, zgovorno pričajo o odločni preusmeritvi kmetije v živinorejo.

Za popoln prikaz kultur in obdelovalnih površin v obravnavanem obdobju pa je bilo potrebno upoštevati še, da je gospodar oddal v najem oddaljeno travniško parcelo v izmeri 12.165 m² in istočasno imel v najemu travniško parcelo v izmeri 10.000 m². Hkrati je imel v najemu še njivo za krompir, veliko 1.350 m² in manjšo njivo za okopavine, ki je merila 80 m².

Tabela št. 2 potemtakem prikazuje dejanske površine, ki jih bomo upoštevali v nadaljnjih izračunih.
<table>
<thead>
<tr>
<th></th>
<th>Stanje po katastru 1978</th>
<th>Dejansko po izmeri 1982</th>
<th>Razlika kat.-dej. (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m²</td>
<td>%</td>
<td>m²</td>
</tr>
<tr>
<td>gozd</td>
<td>312.485</td>
<td>71,4</td>
<td>277.190</td>
</tr>
<tr>
<td>pašnik</td>
<td>15.781</td>
<td>3,6</td>
<td>41.686</td>
</tr>
<tr>
<td>travnik</td>
<td>45.150</td>
<td>10,3</td>
<td>85.360</td>
</tr>
<tr>
<td>njiva</td>
<td>60.706</td>
<td>13,8</td>
<td>10.328</td>
</tr>
<tr>
<td>sadovnjak</td>
<td>2.791</td>
<td>0,6</td>
<td>7.537</td>
</tr>
<tr>
<td>vrt</td>
<td>-</td>
<td>-</td>
<td>300</td>
</tr>
<tr>
<td>stavbišče</td>
<td>1.527</td>
<td>0,3</td>
<td>1.488</td>
</tr>
<tr>
<td>ceste</td>
<td>-</td>
<td>-</td>
<td>14.083</td>
</tr>
<tr>
<td>grmišče</td>
<td>-</td>
<td>-</td>
<td>464</td>
</tr>
</tbody>
</table>

Skupaj: 438.440 100,0 438.436 100,0
<table>
<thead>
<tr>
<th></th>
<th>m^2</th>
<th>število parcel</th>
</tr>
</thead>
<tbody>
<tr>
<td>gozd</td>
<td>277.190</td>
<td>4</td>
</tr>
<tr>
<td>pašnik</td>
<td>41.686</td>
<td>4</td>
</tr>
<tr>
<td>travnik</td>
<td>83.195</td>
<td>17</td>
</tr>
<tr>
<td>njiva</td>
<td>11.758</td>
<td>7</td>
</tr>
<tr>
<td>sadovnjak</td>
<td>7.537</td>
<td>3</td>
</tr>
<tr>
<td>vrt</td>
<td>300</td>
<td>1</td>
</tr>
<tr>
<td>grmišče</td>
<td>464</td>
<td>2</td>
</tr>
<tr>
<td>stavbišče</td>
<td>1.488</td>
<td>1</td>
</tr>
<tr>
<td>ceste</td>
<td>14.083</td>
<td>1</td>
</tr>
<tr>
<td>S k u p a j:</td>
<td>437.701</td>
<td>41</td>
</tr>
</tbody>
</table>

Pri obdelavi torej nismo upoštevali katastrskih parcel, ampak dejanske enote. Z rabo in časom se namreč ni spreminjala le namembnost parcel, kot so bile zarisane v katastru, ampak tudi njihove meje. Dejansko stanje teh površin prikazuje karta št. 1.

Določene težave smo imeli z opredeljevanjem namembnosti posameznih parcel, kjer raba ni bila zgolj enonamska; gre za pašnik, kjer tudi kosijo, ali travnik, kjer tudi pasejo, sadovnjak, ki služi tudi košnji in paši. V takih primerih smo površino opredelili v kategorijo, s katero se je skladal pretežni del produkcije.
4.3 RELIEFNE ZNAČILNOSTI

Obravnavana kmetija leži med približno 550 in 930 metri nadmorske višine. Dom se nahaja na višini 785 m.

S pomočjo DMR je bil izdelan pregled površin po štiridesetmetrskih višinskih pasovih in karta št. 2, ki prikazuje glavne reliefne obrede celotne posesti.

TABELA 3: Pregled površin celka po višinskih pasovih
(spodnje meje vsebovane v razredu)

<table>
<thead>
<tr>
<th>šifra v karti</th>
<th>višinski pas m</th>
<th>površina (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>560 - 600</td>
<td>0,75</td>
<td>1,7</td>
</tr>
<tr>
<td>3</td>
<td>600 - 640</td>
<td>3,75</td>
<td>8,5</td>
</tr>
<tr>
<td>4</td>
<td>640 - 680</td>
<td>4,75</td>
<td>10,8</td>
</tr>
<tr>
<td>5</td>
<td>680 - 720</td>
<td>6,00</td>
<td>13,6</td>
</tr>
<tr>
<td>6</td>
<td>720 - 760</td>
<td>4,50</td>
<td>10,2</td>
</tr>
<tr>
<td>7</td>
<td>760 - 800</td>
<td>7,00</td>
<td>15,9</td>
</tr>
<tr>
<td>8</td>
<td>800 - 840</td>
<td>6,25</td>
<td>14,2</td>
</tr>
<tr>
<td>9</td>
<td>840 - 880</td>
<td>5,50</td>
<td>12,5</td>
</tr>
<tr>
<td>A</td>
<td>880 - 920</td>
<td>3,75</td>
<td>8,6</td>
</tr>
<tr>
<td>B</td>
<td>920 - 960</td>
<td>1,75</td>
<td>4,0</td>
</tr>
</tbody>
</table>

Skupaj: 44,00 100,0
KARتا ŠT. 1: VZORČNA KMETIJA
Kmetija res leži v višinskem pasu, ki je zastopan z največjo površino, posest pa se razteza do 200 m pod in 200 m nad selskim (45 oz. 39 odstotkov). Take višinske razlike povzročajo izredne dodatne energijske stroške pri transportu, ki bi zah- tevali posebno pozornost. Verjetno je tudi to razlog za središčno lego doma v agrarnem jedru samem.

Velike strmine povzročajo težave tudi pri obdelovanju. Da bi preprečili prehitro nastajanje ornih teras, orjejo na preostali slabi petini njiv z vitlom – po padnici. Pregled nagibov podajata tabela št. 4 in karta št. 3.

TABELA 4: Pregled nagibov po nagibnih razredih

<table>
<thead>
<tr>
<th>šifra</th>
<th>nagibni razred (v %)</th>
<th>površina (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>25 - 25</td>
<td>0,25</td>
<td>0,6</td>
</tr>
<tr>
<td>3</td>
<td>25 - 35</td>
<td>1,50</td>
<td>3,4</td>
</tr>
<tr>
<td>4</td>
<td>35 - 45</td>
<td>10,75</td>
<td>24,4</td>
</tr>
<tr>
<td>5</td>
<td>45 - 55</td>
<td>14,00</td>
<td>31,8</td>
</tr>
<tr>
<td>6</td>
<td>55 - 65</td>
<td>9,75</td>
<td>22,2</td>
</tr>
<tr>
<td>7</td>
<td>65 - 75</td>
<td>6,50</td>
<td>14,8</td>
</tr>
<tr>
<td>8</td>
<td>75 - 85</td>
<td>1,25</td>
<td>2,8</td>
</tr>
</tbody>
</table>

Skupaj: 44,00 100,0

Pregled kaže, da na posesti praktično ni površin z nagibi, ki bi bili še primerni za sodobno pojmovano intenzivno obdelavo.
4.4 EKSPOZICIJA

V danem krajinškem okviru je ekspozicija poleg nagiba najpomembnejši dejavnik, ki pogojuje dotok sončne energije.

Tabela št. 5 in karta št. 4 prikazujeta pregled površin po ekspoziciji.

TABELA 5: Pregled površin celka po ekspoziciji

<table>
<thead>
<tr>
<th>šifra</th>
<th>razred</th>
<th>površina (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N</td>
<td>0,50</td>
<td>1,1</td>
</tr>
<tr>
<td>1</td>
<td>NE</td>
<td>9,00</td>
<td>20,5</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>16,00</td>
<td>36,3</td>
</tr>
<tr>
<td>3</td>
<td>SE</td>
<td>18,25</td>
<td>41,5</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>0,25</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Skupaj: 44,00 100,0

Na obravnavanem celku torej absolutno prevladujejo ekspozicije z vzhodno komponento. Najobsežnejša je površina z jugovzhodno ekspozicijo; vse to vsaj delno kompenzira dokaj veliko nadmorsko višino.
4.5 OSONČENJE IN TEMPERATURA

Sončno obsevanje kot glavni (naravni) vir energije smo skušali izračunati teoretično - s pomočjo DMR in Frank-Leejevih vrednosti (Frank, E.C., Lee, R., 1966) za potencialno direktno sončno obsevanje. Te vrednosti so izračunane brez upoštevanja energetskih izgub na prehodu skozi atmosfero, torej zgolj na osnovi solarne konstante in jih je bilo zato treba za praktično rabo prirediti (gl. pogl. o energijskih vhodih). V neprirejeni obliki so zato ti podatki predvsem uporabni kot osnova za primerjave med posameznimi površinami (ali rabami tal).

Teoretične količine letnega sončnega obsevanja (v kJ/cm²) prikazuje tabela št. 6 in karta št. 5.

TABELA 6: Pregled teoretičnega letnega osončenja površin
(spodnje meje vsebovane v razredu)

<table>
<thead>
<tr>
<th>šifra</th>
<th>razred (kJ/cm²)</th>
<th>površina (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>400 - 500</td>
<td>0,75</td>
<td>1,7</td>
</tr>
<tr>
<td>3</td>
<td>500 - 600</td>
<td>1,00</td>
<td>2,3</td>
</tr>
<tr>
<td>4</td>
<td>600 - 700</td>
<td>3,00</td>
<td>6,8</td>
</tr>
<tr>
<td>5</td>
<td>700 - 800</td>
<td>4,00</td>
<td>9,1</td>
</tr>
<tr>
<td>6</td>
<td>800 - 900</td>
<td>6,00</td>
<td>13,6</td>
</tr>
<tr>
<td>7</td>
<td>900 - 1000</td>
<td>7,50</td>
<td>17,0</td>
</tr>
<tr>
<td>8</td>
<td>1000 - 1100</td>
<td>7,25</td>
<td>16,5</td>
</tr>
<tr>
<td>9</td>
<td>1100 - 1200</td>
<td>11,25</td>
<td>25,6</td>
</tr>
<tr>
<td>A</td>
<td>1200 - 1300</td>
<td>3,25</td>
<td>7,4</td>
</tr>
</tbody>
</table>

Skupaj: 44,00 100,0

Pri dani geografski širini se teoretične količine celoletnega obsevanja gibljejo med 297 in 1312 kJ/cm² - s srednjo vrednostjo
pri 850 kJ/cm². Ne le, da 80% površin prejema več kot povprečno količino osončenja - največji deleži površin so prav v najbolj osončenih razredih. Glede sončnega obsevanja lahko zaključimo, da so energijske razmere ugodne.

Temperature na obravnavanem celiku smo merili dve leti - od apri- la 1982 do maja 1984 s termohigrografom znamke FISCHER, nameščenim v standardizirani hišici.

Potek srednjih mesečnih temperatur v opazovalnem obdobju 1982 - 1984 prikazuje grafikon št. 1 - skupaj s potekom teoretičnega sončnega obsevanja - ob predpostavki, da je srednji naklon ce- lotnega zemljišča 51% eks pozicija pa 122°.
KARTA ŠT. 5: PREGLED TEORETIČNEGA LETNEGA OSONČENJA POVRŠIN NA CELKU
(razredi v kJ/cm² - spodnje meje vsebovane v razredu)

LEGENDA:
2 - 400 - 500
3 - 500 - 600
4 - 600 - 700
5 - 700 - 800
6 - 800 - 900
7 - 900 - 1000
8 - 1000 - 1100
9 - 1100 - 1200
A - 1200 - 1300
0°	0°	1°	2°	3°	4°	5°	6°	7°	8°	9°	10°	11°	12°	13°	14°	15°	16°	17°	18°	19°	20°	21°	
								7°	6°	5°	4°	3°	2°	1°	0°	0°	0°	0°	0°	0°	0°	0°	0°

Table 7: Spanish air temperature readings.
Tabela 8:

Dnevnje mesečne srednje temperature
Maj 1982 - April 1983

<table>
<thead>
<tr>
<th>DAN</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.5</td>
<td>3.0</td>
<td>13.3</td>
<td>15.5</td>
<td>16.1</td>
<td>9.5</td>
<td>11.8</td>
<td>12.2</td>
<td>12.0</td>
<td>11.5</td>
<td>9.5</td>
<td>8.8</td>
<td>4.8</td>
</tr>
<tr>
<td>2.</td>
<td>7.5</td>
<td>16.0</td>
<td>16.0</td>
<td>17.5</td>
<td>17.5</td>
<td>17.8</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>3.</td>
<td>12.0</td>
<td>18.0</td>
</tr>
<tr>
<td>4.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>5.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>6.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>7.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>8.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>9.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>10.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>11.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>12.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>13.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>14.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>15.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>16.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>17.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>18.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>19.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>20.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>21.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>22.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>23.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>24.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>25.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>26.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>27.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>28.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>29.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>30.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
<tr>
<td>31.</td>
<td>9.5</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Srednja letna temperatura: 7.67
GRAFIKON 1: Potek srednijih mesečnih temperatur 1982-1984 - s teoretičnim potekom sončnega obsevanja in trajanjem obsevanja
4.6 SPLOŠEN ORIS GOSPODARSKEGA OBRATA

Stanje poljedelstva na celku posredno kaže na stopnjo tržne preusmerjenosti. Površina njiv se je do 1. 1982 zmanjšala na dobro sedmino tistega, kar je znašala še pred 100 leti. Za domače potrebe vsako leto sade po 30 zabojčkov krompirja (po 30 kg), dokaj stabilna je tudi površina namenjena koruzi (približno 6.000 m²), ki pa ne dozori vselej in služi predvsem kot krmna rastlina. Preostanek njiv posejejo z ržjo, ki jo pridelajo okrog 600 - 1000 kg letno, redkeje sejejo tudi oves in ajdo.

Njivske površine so se v zadnjem času stabilizirale (okrog 1 ha). Med seboj se menjajo le površine travnikov in njiv, njihova skupna površina pa ostaja ista.

Kmetija se vse bolj preusmerja v živinorejo. Mleko in meso sta glavna kmetijska proizvoda za trg. V hlevu imajo 5 - 7 krav, 3 bike, 14 glav mlade govedi (pittancev in junic), kobilo z žrebetom in 4 - 6 prasičev, na dvorišču pa 10 - 20 nesnic in 30 - 40 piščancev.

Gozd je zaenkrat še vedno najpomembnejši vir dohodka. V obravnovanem letu so zaradi gradnje gozdne ceste posekali 160 m³ hlodovine, kar je več od etata, ki znaša 120 m³. Gospodarjenje z gozdom je intenzivno.

Kmetija je z gozdo kamionsko cesto povezana z dolino (7 km). Dobra makadamska cesta, ki jo odprta vse leto omogoča poleg drugega tudi redno oddajo mleka.

Elektrika (trofazni tok) je napeljana od leta 1953, z vodo se oskrbjujejo iz lastnega zajetja, ki zadostuje tudi v sušnih obdobjih.

Poleg stanovanjskega poslopja z obširno kletjo so na celku še
naslednje stavbe: hlev s senikom (kapaciteta 1240 m³), jama za gnojevko (60 m³) in betoniranim gnojiščem (60 m³), svinjak, kašča z delavnico, kovačnica, žaga, drvarnica in čebelnjak.

Imajo še 3 silose s skupno kapaciteto 167 m³, opremljenost s stroji pa prikazuje tabela št. 9.

Vse navedeno kaže, da gre za naprejno usmerjeno kmetijo, ki ima perspektive tudi v prihodnosti.
Tabela 9: Opremljenost s stroji na obravnavanem celiku

<table>
<thead>
<tr>
<th>Številka</th>
<th>Vrsta stroja</th>
<th>Moč [kW]</th>
<th>Leto izdelave</th>
<th>Življenjska doba</th>
<th>Cena [1983/84 v 10.000 din]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Traktor Zetor</td>
<td>47,8 (nafta)</td>
<td>5.000 ur</td>
<td>140,0</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Traktor Lindner</td>
<td>23,5 (nafta)</td>
<td>5.000 ur</td>
<td>60,0</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Kosilnica</td>
<td>5,5</td>
<td>900 ur</td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Obračalnik</td>
<td>9,0</td>
<td>900 ur</td>
<td>15,0</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Prevetrovalnik</td>
<td>3,0 (el.)</td>
<td>20 let</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Puhalnik</td>
<td>5,5 (el.)</td>
<td>20 let</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Siloreznica</td>
<td>5,5 (el.)</td>
<td>400 ur</td>
<td>20,0</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Trak.vile</td>
<td>-</td>
<td>10 let</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Nakladač</td>
<td>-</td>
<td>2.000 ur</td>
<td>30,0</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Motorka</td>
<td>3,8</td>
<td>1.000 ur</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Prikolica</td>
<td>-</td>
<td>15 let</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Prikolica</td>
<td>-</td>
<td>15 let</td>
<td>20,0</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Trosilec</td>
<td>-</td>
<td>15 let</td>
<td>20,0</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Mlatilnica</td>
<td>5,5 (el.)</td>
<td>20 let</td>
<td>25,0</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Žaga za hlod.</td>
<td>5,5 (el.)</td>
<td>2.000 ur</td>
<td>15,0</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Cirkularka</td>
<td>4,0 (el.)</td>
<td>2.000 ur</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Molzni stroj</td>
<td>0,55 (el.)</td>
<td>15 let</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Preša</td>
<td>-</td>
<td>20 let</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Moped</td>
<td>3,0</td>
<td>3 leta</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Avto</td>
<td>33,8</td>
<td>100.000 km</td>
<td>37,0</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Moped</td>
<td>3,0</td>
<td>3 leta</td>
<td>4,5</td>
<td></td>
</tr>
</tbody>
</table>

Bencinski (naftni) pogon: 129,4 kW
Električni pogon: 23,5 kW
S k u p a j: 152,9 kW

Na nafto le traktor, ostalo bencin.
4.7 PRILAGOJENOST NARAVNIH DANOSTIM - RAZVOJ

V spreminjanju zemljiške strukture celka se odseva tudi njegovo prilagajanje spreminjajočim se družbenoekonomskim razmeram - ob nespremenljivih naravnih danostih.

Te spremembe prikazujejo karte št. 6, 7 in 8 in tabela št. 10. Tabela podaja razmerja med rabami tal po katastrskih podatkih iz leta 1825 in 1880 (v mejah današnjega celka - te so namreč nekoliko skrčile) ter po izmeri iz l. 1982, hkrati pa prikazuje delež posameznih rab, ki so bili zajeti za računalniško analizo (z digitalnim modelom reliefa). Zaradi rastrskega zajemanja podatkov je kljub sorazmerni gosti mreži (50 x 50 m) razumljivo, da so bile najverneje zajete rabe tal z velikimi, kompaktnimi parcelami, manj natančno pa intenzivnejše rabe z ameboidnimi oblikami parcel. Poleg tega gre za razmeroma majhen vzorec.

Tabela št. 10 prikazuje celok v treh značilnih obdobjih njegovega razvoja. Razmerja iz l. 1825 s presenetljivo majhnim deležem gozda in veliko površino ekstenzivnega, mnogonomenskega pašnika slikajo podobo celka v času feudalne avtarkije. Razmerja v letu 1880 prikazujejo čas po zemljiški odvezi. Stabilne površine travnikov in njiv pač pričajo o nujnosti preživetja; naravnost ne razumljiv pa je obseg premika med gozdom in pašnikom, ki očitno kaže na veliko krizo gospodarske (ne)orientiranosti. Pojava namreč ni mogoče razložiti le s pojavom lesnega trga. Gotovo je šlo tudi za pašo v gozdu - ne eno ne drugo pa ne pojasni obsega sprememb, ki je v primerjavi s širšim območjem vsekakor izjemen. Verjetno gre za stvari, ki bi jih bilo mogoče razložiti le s človeškim faktorjem.

Zemljiška struktura iz leta 1982 že prikazuje neavtarkičen gospodarski obrat, ki je že usmerjen v tržno proizvodnjo lesa, mleka in mesa. Tako stanje najbolje ilustrirajo mali preostanek nekdanjih njivskih površin ter na njihov račun povečani deleži travnikov in pašnikov.
LEGENDA:
1 - gozd
2 - pašnik
3 - travnik
4 - njiva
5 - selišče
6 - sadovnjak
LEGENDA:
1 - gozd
2 - pašnik
3 - travnik
4 - njiva
5 - selišče
6 - sadovnjak

100m 50 0 100 200 300 400 500m
<table>
<thead>
<tr>
<th></th>
<th>1825</th>
<th></th>
<th>1880</th>
<th></th>
<th>1982</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMR (ha)</td>
<td>KAT. (ha)</td>
<td>DMR (ha)</td>
<td>KAT. (ha)</td>
<td>DMR (ha)</td>
<td>Dejanško (ha)</td>
</tr>
<tr>
<td>gozd</td>
<td>7,50</td>
<td>9,32</td>
<td>30,25</td>
<td>31,14</td>
<td>27,50</td>
<td>27,72</td>
</tr>
<tr>
<td>pašnik</td>
<td>23,50</td>
<td>24,07</td>
<td>0,75</td>
<td>1,10</td>
<td>5,75</td>
<td>5,92</td>
</tr>
<tr>
<td>travnik</td>
<td>4,00</td>
<td>6,06</td>
<td>3,75</td>
<td>6,02</td>
<td>9,00</td>
<td>7,50</td>
</tr>
<tr>
<td>njiva</td>
<td>8,00</td>
<td>6,73</td>
<td>8,25</td>
<td>6,90</td>
<td>0,75</td>
<td>1,06</td>
</tr>
</tbody>
</table>
Tak pogled je vsekakor potreben za poglobljeno razumevanje cel-ka, čeprav odseva le del vzrokov za spremembe - na enem celku ali v vsej pokrajini. Na zanimiv način pa ga dopolnjujejo še odgovori na vprašanje, koliko je kmet v teh procesih, ki so bili pogojeni družbenogospodarsko, upošteval narave danosti.

Na to vprašanje smo skušali odgovoriti z računalniško analizo vpliva osončenja in nagiba na glavne zemljiške kategorije - gozd, pašnik, travnik in njivo. Odgovor so vsekakor pomembni tudi za razumevanje strategij iskanja energijskega ravnotežja v posameznih obdobjih. Rezultate te analize prikazujejo grafi-koni št. 2, 3, 4 in 5.

Najzgovornejši so vsekakor rezultati analize razporeda gozdnih površin glede na osončenje in nagib (graf. 2). Leta 1825 gozd očitno še ni bil gospodarsko zanimiv. Ob sorazmerno majhnem delu je skoraj enakomerno razporejen po vseh razredih osončenja, zmerno pa je nakazan premik v razrede z večjim nagibom. V naslednjem obdobju so gozdu že prepuščene vse površine, ki prejemajo manj kot 800 kJ/cm² sončne energije letno, hkrati pa spadajo tudi v najstrmejše razrede (z nagibom nad 50%). Tako stanje v bistvu velja še danes.

Pašnik (graf. 3) je leta 1825 še zavzemal hladnejše, predvsem pa bolj strme lege, ki jih je v naslednjem obdobju v celoti prepu-stil gozd. Njegova današnja funkcionalna fiziognomija je močno spremenjena, saj zavzema tako po osončenju kot nagibu umirjenejše terene. Premik v toplejše lege bi bilo mogoče celo razlagati kot kognitivno iskanje večjega deleža sončne energije za proizvodnjo travinja.
GRAFIKON ŠT. 2: Razpored gozdnih površin glede na osončenje
- 1825 - 1880 - 1982

Razpored gozdnih površin glede na nagib
- 1825 - 1880 - 1982
GRAFIKON ŠT. 3: Razpored pašniških površin glede na osončenje - 1825 - 1880 - 1982

Razporeditev pašniških površin glede na nagib - 1825 - 1880 - 1982
GRAFIKON št. 4: Razpored travniških površin glede na osončenje - 1825 - 1880 - 1982

Razpored travniških površin glede na nagib - 1825 - 1880 - 1982
GRAFIKON ŠT. 5: Razpored njivskih površin glede na osončenje
- 1825 - 1880 - 1982

--- vse površine
--- 1825
--- 1880
--- 1982

Razpored njivskih površin glede na nagib
- 1825 - 1880 - 1982

--- vse površine
--- 1825
--- 1880
--- 1982
925 ha, dines pa g8,5 hektara.

Azonos nyugványról ismert volt az 1980-as évek közepén, amikor a termelésre vonatkozó szabályozás volt.

Azonban az 1980-es évek óta a termeléshez kapcsolódó problémák miatt az említett területen visszavette a termelésre vonatkozó szabályozást.

A területen ma is termelésre készülnek, de azonban a termeléshez kapcsolódó problémák miatt a terület készen állot a termelésre.
Travnik (graf. 4) je svojo funkcionalno fiziognomijo iz prvih dveh obdobij s širitvijo na nekdanje njivske (tudi energijsko najugodnejše) površine povsem izgubil (prim. graf. 5!). Isto velja za pomik v nagibni razred 40 - 50%.

Z izgubo gospodarske pomembnosti so se spremenile tudi tovrstne značilnosti njive (graf. 5), ki so v minulih dveh obdobjih ostale presenetljivo podobne. Večina nekdanjih njivskih površin je prešla v travnik. Preostale površine so izgubile vse nekdanje značilnosti. Z oranjem z vitlom so se pomaknile celo v nagibe, kjer njiv poprej ni bilo.

Analizate nekdanjih rab tal za širše območje (prim. Anko, 1983, str. 148-155) pa tudi za obravnavani celek kažejo, da je obstajala nekakšna meja med intenzivnejšimi rabami tal (njiva, travnik) in ekstenzivnejšimi (gozd, pašnik) - in sicer pri teoretičnem osončenju pri okrog 800 kJ/cm² letno in nagibih nad 50%.

Če je bila to včasih meja med intenzivnimi in ekstenzivnimi rabbmi, bi tudi v bodoče lahko bila vsaj med pašnimi površinami (ki bodo med kmetijskimi površinami v prihodnje prevladale), in gozdom. Zato smo z računalniško analizo skušali ugotoviti, koliko površin z nagibom manjšim od 50% prejema več kot 800 kJ/cm² letno - to naj bi bile v prihodnje potencialne pašne površine. Analiza kaže (karta št. 9), da je teh površin kar slaba polovica.

Nadalje smo skušali z enako analizo ugotoviti, kako uspešno je človek te danosti odbral in upošteval. Že karta št. 9 kaže, da se agrarno jedro presenetljivo dobro ujema z najugodnejšimi površinami, podobno pa tudi karta št. 10 pokaže, da je bilo l. 1825 le 3 ha teh površin pod gozdom - vse ostale so bile izkrčene. Ko so v oblikovanju prostora družbenogospodarski momenti prevladali nad upoštevanjem naravnih danosti, se je seveda spremenilo tudi to razmerje. Tako je od teh najugodnejših tal (ki so po kemičnih in fizikalnih lastnostih dokaj homogena), l. 1880 gozd poraščal že 9,25 ha, danes pa 8,5 hektara.
KARTA ŠT. 9: KARTA VSEH POVRŠIN NA CELKU Z NAGIBOM POD 50% IN LETNIM OSONČENJEM NAD 800 kJ/cm²

LEGENDA:
1 - obravnavane površine
KARTA ŠT. 10: KARTA VSEH POVRŠIN NA CELKU Z NAGIBOM POD 50% IN LETNIM OSONČENJEM NAD 800 kJ/cm², KI SO BILE LETA 1825 POD GOZDOM

LEGENDA:

+ obravnavane površine
5 ENERGIJSKI TOKOVI GOSPODARSKEGA OBRATA CELKA

Gospodarski razlog za obstoj celka - nekoč in danes - je proizvodnja organske snovi, to je pretvorba sončnega sončnega sevanja v posebne oblike kemične energije, potrebne človeku: predvsem les, beljakovine, maščobe in ogljikove hidrate.

Ker organsko snov lahko obravnavamo tudi kot posebno obliko energije, je mogoče večino (ekoloških) dogajanj na celku interpretirati v jeziku energije.

Če celek obravnavamo kot ekološki sistem (ki predstavlja krajino v malem), lahko govorimo o dveh glavnih vrstah energijskih tokov: o vhodih in izhodih, ki jih naprej lahko delimo na naravne in umetne. Na časovne, količinske in kakovostne razlike med energijskimi vhodi in izhodi takega sistema, ki dejansko predstavljajo njegovo "energijsko bilanco" vpliva niz parametrov, ki jih označujemo kot upore same proizvodnje (glede na njeno vrsto in trofično stopnjo, kjer se odvija) in z njo vezane številne takoimenovane "notranje" tokove, ki najbolje opredeljujejo delovanje celka kot ekološko-ekonomskega sistema. Med najpomembnejše energijske vhode na ta način štejemo:

1. naravne vhode (sončna, vodna, vetrna energija)
2. strojno delo (pri čemer ločimo stroje na naftni in električni pogon)
3. tuje delo (ki so ga opravili najeti delavci, ne da bi ga član gospodinjstva vrnili)
4. snovna vlaganja v proizvodnjo (umetna gnojila, močna krmila, zaščitna sredstva, ostali repromaterial itd.)
5. nabavno osnovnih sredstev (strojev, gradbenega materiala)
6. nakupe, potrebne za vzdrževanje gospodinjstva in gospodarskega obrata (hrana, obleka itd.)
7. kredite, subvencije.
Najpomembnejše oblike izhodov so:

1. Naravni izhodi (sproščanje energije ob bioloških procesih ipd.)

2. Prodano blago (les, živina, mleko, itd.)

3. Delo, opravljeno za druge

4. Razne dajatve (davki, prispevki, zavarovanje itd.)

Spričo skromnega obsega naloge smo največ pozornosti posvetili predvsem vhodom in izhodom, ki smo jih spremljali za posamezne obdelovalne enote (parcele) in glavne rabe tal (gozd, pašnik, travnik, njiva), manj pa se je bilo mogoče posvetiti notranjim tokovom in povratnim zvezam med izhodi in vhodi.
5.1 NARAVNI VHODI ENERGIJE

Kot naravne energijske vhode označujemo vse oblike energije, ki sodelujejo v delovanju nekega sistema in spontano - brez človekovega posredovanja izvirajo iz naravnih danosti ali procesov. Najpogostejše oblike tovrstne energije so sončna, vodna in vetrna energija. Na obravnavanem celiku pride v poštev le prva od njih. Naravni vhodi energije so bili na celiku vselej bolj ali manj konstantni. Odvisni so kvečjemu od vremenskih pogojev v danem letu ali od dolgoročnejših klimatskih gibanj.

5.1.1 Energija sončnega obsevanja

O energiji sončnega obsevanja kot ekološkem dejavniku, ki je očitno vplival na prostorski razpored rabe tal, je bil govor v poglavju 4.5.

V tej zvezi nas sončna energija posebej zanima kot največji in najpomembnejši energijski vhod v gozdnine in kmetijske ekosisteme.

Količino sončne energije, ki jo prejema posamezna obdelovalna enota (parcela) smo določili na naslednji način:

1. Za vsako obdelovalno enoto smo na terenu določili nagib in azimut zemljišča. Če je enota v razgibanem terenu, smo nagib in azimut določili za posamezne, okularno in s pomočjo karte ocenjene površinske deleže.
2. Za vsako zemljišče z določenim nagibom in azimutom smo nato tabelarno (FRANK, LEE, 1966) določili potencialno letno količino direktnega sončnega obsevanja.

3. Tako dobljene količine smo primerjali z rezultati 20-letnih meritev kvaziglobalnega obsevanja za postajo Duh na Ostrem vrhu (Hočevar, 1982, str. 71). Ta postaja leži na Kozjaku, približno 29 km vzhodno od obravnavane kmetije, na podobni nadmorski višini (910 m) in je zato po klimatskih razmerah dokaj podobna obravnavanemu območju.

Primerjava je pokazala, da vrednosti globalnega obsevanja za Duh znašajo 42,4% potencialnih po Franku in Leeju, pri kvaziglobalnem obsevanju v južni legi pa te vrednosti znašajo pri nagibu 20° (= 36%) 39,2%, pri nagibu 40° (= 83%) pa 38,0%.

Teoretično osončenje vsake parcelle smo zato ocenili kot 40% vrednosti po Franku in Leeju.

Ocene naravnih vhodov (sončne) energije za posamezne parcelle in glavne rabe prikazujejo priloge št. 1 do 5, sumarne vrednosti po rabah pa tabela št. 11.

Po pričakovanju najmanjše količine obsevanja (89% povprečja) prejema gozd. Presenečajo morda največje količine pri pašniku (124% povprečja); najverjetneje se intenzivnejše rabe (travnik, zlasti pa njiva) izogibajo najbolj osončenim legam zaradi sušnosti.

Skupno količino teoretičnega letnega osončenja smo primerjali s tisto, ki smo jo izračunali na osnovi DMR (prim. tab. št. 6) kot zmnožek površin in srednjih vrednosti v razredu; tako izračunan na vrednost je od vsote v tabeli št. 11 večja le za 3,6%, kar priča o uporabnosti DMR.

Potencialne količine dnevnega obsevanja po Franku in Leeju (ustrez-
<table>
<thead>
<tr>
<th></th>
<th>Površina m^2</th>
<th>Povprečno teoretično letno osončenje kWh/m²</th>
<th>Skupno teoretično osončenje 10^3 kWh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gozd</td>
<td>277.190</td>
<td>945</td>
<td>261.971</td>
<td>56</td>
</tr>
<tr>
<td>Pašnik</td>
<td>41.686</td>
<td>1.328</td>
<td>55.344</td>
<td>12</td>
</tr>
<tr>
<td>Travnik</td>
<td>83.195</td>
<td>1.264</td>
<td>105.188</td>
<td>23</td>
</tr>
<tr>
<td>Njiva</td>
<td>11.758</td>
<td>1.238</td>
<td>14.555</td>
<td>3</td>
</tr>
<tr>
<td>Ostalo</td>
<td>23.872</td>
<td>1.230</td>
<td>29.357</td>
<td>6</td>
</tr>
<tr>
<td>Skupaj</td>
<td>437.701</td>
<td>1.066</td>
<td>466.415</td>
<td>100</td>
</tr>
<tr>
<td>Zap. št.</td>
<td>Datum</td>
<td>Vreme</td>
<td>1.odčit. T</td>
<td>2.odčit. T</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------------------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>6.5.1983</td>
<td>dopoldan sončno, popoldan delno oblačno</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>18.5.1983</td>
<td>sončno</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>1.6.1983</td>
<td>sončno</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>27.6.1983</td>
<td>dopoldne sončno, popoldne oblačno</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>15.7.1983</td>
<td>dopoldne precej sončno, popoldne oblačno</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>28.7.1983</td>
<td>precej sončno, proti večeru oblačno</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>22.8.1983</td>
<td>dopoldne oblačno in soparno, popoldan sončno</td>
<td>1</td>
<td>26,5</td>
</tr>
<tr>
<td>8</td>
<td>19.9.1983</td>
<td>jasno in sončno</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>5.10.1983</td>
<td>jasno in sončno</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>8.11.1983</td>
<td>dopoldne nizka oblačnost, popoldne sončno</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12.12.1983</td>
<td>jasno in brez snega</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>26.4.1984</td>
<td>sončno, občasno rahio oblačno</td>
<td>1</td>
<td>26</td>
</tr>
</tbody>
</table>

\(\bar{X} = 27.7 \)
5.2 UMETNI VHODI ENERGIJE

Med umetne energijske vhode štejemo vsa vlaganja v sistem, ki so povzročila energijski strošek nekje drugje, pa so bila vložena direktno (ali indirektno) v gospodarski obrat - s človekovim posredovanjem.

Če je za naravne vhode značilna velika stabilnost, so umetni vhodi močno spremenljivi. Odražajo proizvodne, splošne družbeno-gospodarske razmere, pa tudi povsem subjektivne gospodarjeve odločitve. S tem ti vhodi vplivajo na zgradbo in delovanje sodobnega celka in posredno pričajo o njegovi prilagojenosti sodobnim razmeram - ob upoštevanju naravnih danosti.

Z večanjem te vrste vhodov se vsekakor manjšajo razlike med celkom in nižinsko kmetijo - izginile pa ne bodo. Razlike v njih bodo še naprej morale odražati različnost naravnih pogojev ene in drugo kmetije, hkrati pa bodo tudi vplivale na prihodnjo zgradbo in delovanje eko - eko sistema celek.

5.2.1 Strojno delo

Delo, ki ga opravljajo stroji, nadomešča človeško in živalsko delo, ki v pravem pomenu ne predstavlja energijskega vhoda v sistem, ampak se ustvarja in vzdržuje z energijo, vezano na celku.

Energijski vložek, ki ga predstavlja strojno delo je mogoče izraziti s količino energije, porabljene za delo in s količino energije, ki jo predstavlja ob tem delu amortizirani del stroja. Upoštevamo namreč, da proizvodnja stroja povzroči energijski strošek (izven sistema), ki pa ga je treba upoštevati. Ob skromnem obsegu "energijskega premišljevanja" žal ne vemo, kolikšni so ener-
<table>
<thead>
<tr>
<th>Vrsta rabe tal</th>
<th>Gozd</th>
<th>Pašnik</th>
<th>Travnik</th>
<th>Njive</th>
<th>Ostalo</th>
<th>Skupaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vrsta stroja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. NAPHTI IN KEMINSKI POGON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traktor 47,8 kV</td>
<td>ure</td>
<td>37</td>
<td>-</td>
<td>114</td>
<td>64</td>
<td>(230)* 215</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>1.768,6</td>
<td>-</td>
<td>5.449,2</td>
<td>3.059,2</td>
<td>(10.994)* 10.277</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>11</td>
<td>-</td>
<td>34</td>
<td>19</td>
<td>(68)* 64</td>
</tr>
<tr>
<td>Traktor 23,5 kW</td>
<td>ure</td>
<td>21</td>
<td>-</td>
<td>22</td>
<td>35</td>
<td>- 148</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>2.138,5</td>
<td>-</td>
<td>517</td>
<td>822,5</td>
<td>- 3.478</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>13</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>- 21</td>
</tr>
<tr>
<td>Kosičnica 5,5 kW</td>
<td>ure</td>
<td>-</td>
<td>-</td>
<td>98</td>
<td>-</td>
<td>- 98</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>-</td>
<td>-</td>
<td>539</td>
<td>-</td>
<td>- 539</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>- 4</td>
</tr>
<tr>
<td>Obračalnik 7,7 kW</td>
<td>ure</td>
<td>-</td>
<td>-</td>
<td>112</td>
<td>-</td>
<td>- 112</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>-</td>
<td>-</td>
<td>1.008</td>
<td>-</td>
<td>- 1.008</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>- 6</td>
</tr>
<tr>
<td>Motorka 1,7 kW</td>
<td>ure</td>
<td>65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 67</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>240,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,4 247,9</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0 2</td>
</tr>
<tr>
<td>Skupaj nefta + bencin</td>
<td>ure</td>
<td>193</td>
<td>-</td>
<td>346</td>
<td>99</td>
<td>2 640</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>4.147,6</td>
<td>-</td>
<td>7.513,2</td>
<td>3.881,7</td>
<td>7,4 15.549,9</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>26</td>
<td>-</td>
<td>47</td>
<td>24</td>
<td>0 97</td>
</tr>
<tr>
<td>L. ELEKTRIČNI POGON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siloreshnica 5,5 kW</td>
<td>ure</td>
<td>-</td>
<td>-</td>
<td>36</td>
<td>14</td>
<td>- 50</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>-</td>
<td>-</td>
<td>198</td>
<td>77</td>
<td>- 275</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>- 1</td>
</tr>
<tr>
<td>Prevoznovalnik 3,0 kW</td>
<td>ure</td>
<td>-</td>
<td>-</td>
<td>41</td>
<td>-</td>
<td>- 41</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>-</td>
<td>-</td>
<td>123</td>
<td>-</td>
<td>- 123</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>- 1</td>
</tr>
<tr>
<td>Puhalnik 5,5 kW</td>
<td>ure</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>- 25</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>-</td>
<td>-</td>
<td>137,5</td>
<td>-</td>
<td>- 137,5</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>- 1</td>
</tr>
<tr>
<td>Žaga 5,5 kW</td>
<td>ure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cirkular 4,0 kW</td>
<td>ure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skupaj električni pogon</td>
<td>ure</td>
<td>-</td>
<td>-</td>
<td>102</td>
<td>14</td>
<td>- 116</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>-</td>
<td>-</td>
<td>458,5</td>
<td>77</td>
<td>- 535,5</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>0</td>
<td>- 3</td>
</tr>
<tr>
<td>SKUPAJ A + B</td>
<td>ure</td>
<td>193</td>
<td>-</td>
<td>448</td>
<td>113</td>
<td>2 756</td>
</tr>
<tr>
<td></td>
<td>kwh</td>
<td>4.147,6</td>
<td>-</td>
<td>7.971,7</td>
<td>3.958,7</td>
<td>7,4 16.085,4</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>26</td>
<td>-</td>
<td>50</td>
<td>24</td>
<td>0 100 % kwh</td>
</tr>
</tbody>
</table>

"Spada v kat. delo za drugs" - se tu ne upošteva (oranje snega)
<table>
<thead>
<tr>
<th>Raba</th>
<th>Površina (ha)</th>
<th>Celotni vložek kWh</th>
<th>%</th>
<th>Vložek/ha (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gozd</td>
<td>27,7</td>
<td>4.148</td>
<td>27</td>
<td>149,7</td>
</tr>
<tr>
<td>Pašnik</td>
<td>4,2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Travnik</td>
<td>8,3</td>
<td>7.513</td>
<td>48</td>
<td>905,2</td>
</tr>
<tr>
<td>Njiva</td>
<td>1,2</td>
<td>3.882</td>
<td>25</td>
<td>3.235,0</td>
</tr>
<tr>
<td>Ostalo</td>
<td>2,4</td>
<td>7</td>
<td>-</td>
<td>2,9</td>
</tr>
<tr>
<td>Skupaj</td>
<td>43,8</td>
<td>15.550</td>
<td>100</td>
<td>355,0</td>
</tr>
</tbody>
</table>
zivnosti obdelave"; ob tem se pokažejo tudi prvi obisci relativne prednosti posameznih rab oz. pridelav.

V tabeli št. 13 je prikazanih tudi 230 m oranja s snežnim plugom, ki ga je lastnik pogodbeno opravil za TOK Gozdarstvo Radlje, da je v sorazmerno sneženi zimi lahko nemoteno potekal prevoz otrok v šolo in odkup mleka - sploh da je bil promet z dolino čim manj oviran. Ta energijski strošek, ki bi sicer predstavljal kar 42% vseh vložkov strojnega dela na naftni pogon na obnavljanj kmetiji, bi lahko razdelili na 12 kmetij (pribl. 900 kWh na kmetijo).

Kot energijski strošek je treba upoštevati tudi amortizacijo strojev. Ob upoštevanju 10 odstotne amortizacijske stopnje za motorne stroje (GLIHA in dr., 1980, str. 25), nabavne vrednosti strojev v letu 1983 (ocena gospodarja) in srednje cene nafte (48,0 din za liter) predstavlja amortizacija naslednje vhode po glavnih rabah (tab. št. 15):
<table>
<thead>
<tr>
<th>Vrsta stroja</th>
<th>Vrednost v din</th>
<th>Vrednost v kWh</th>
<th>Gozd</th>
<th>Travnik</th>
<th>Njiva</th>
<th>Ostalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traktor 47,8 kW</td>
<td>140.000</td>
<td>27.128</td>
<td>62</td>
<td>17</td>
<td>4.612</td>
<td>53</td>
</tr>
<tr>
<td>Traktor 23,5 kW</td>
<td>60.000</td>
<td>11.625</td>
<td>27</td>
<td>61</td>
<td>7.091</td>
<td>15</td>
</tr>
<tr>
<td>Kosilnica</td>
<td>9.000</td>
<td>1.748</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Obračalnik</td>
<td>15.000</td>
<td>2.911</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Motorka</td>
<td>2.300</td>
<td>446</td>
<td>1</td>
<td>97</td>
<td>433</td>
<td>-</td>
</tr>
<tr>
<td>Skupaj</td>
<td>226.300</td>
<td>43.858</td>
<td>12.136</td>
<td>20.781</td>
<td>10.928</td>
<td>13</td>
</tr>
</tbody>
</table>

% | 100 | 28 | 47 | 25 | - |
Skupne vhode, ki jih predstavljata delo motornih (naftnih) strojev in njihova amortizacija, prikazuje tabela št. 16.

TABELA 16: Delo in amortizacija (naftnih) strojev kot energijski vhod

<table>
<thead>
<tr>
<th>Rabo</th>
<th>Delo kWh</th>
<th>Amort. kWh</th>
<th>Skupaj kWh</th>
<th>%</th>
<th>kWh/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gozd</td>
<td>4.148</td>
<td>1.258</td>
<td>5.406</td>
<td>27</td>
<td>195</td>
</tr>
<tr>
<td>Travnik</td>
<td>7.513</td>
<td>2.282</td>
<td>9.795</td>
<td>48</td>
<td>1.180</td>
</tr>
<tr>
<td>Njiva</td>
<td>3.882</td>
<td>1.175</td>
<td>5.057</td>
<td>25</td>
<td>4.214</td>
</tr>
<tr>
<td>Ostalo</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Skupaj</td>
<td>15.550</td>
<td>4.716</td>
<td>20.266</td>
<td>100</td>
<td>463</td>
</tr>
</tbody>
</table>

Tabela 16 vse jasneje kaže na relativne prednosti proizvodnje lesa in travinja.

5.2.1.2 Električni pogon

Obravnavano območje je bilo elektrificirano šele leta 1953, zato nam analiza porabe električnega toka po posameznih gospodarstvih daje presenetljivo sliko o sposobnosti prilagajanja novim razmeram in načinom gospodarjenja, hkrati pa tudi že nakazuje, katera kmetija bo obstala in katera ne bo: razlike v porabi električne energije so petnajstkratne (prim. Anko, 1983, str. 81). Nekatere kmetije imajo že dvotarifne števce in porabijo preko 3.000 kWh letno - druge z elektriko le svetijo.

Skupna moč strojev na električni pogon, ki se nahajajo na kmetiji (prim. tab. št. 9), znaša 23,5 kW. Tudi njihovo delo je gospodar
beležil vse leto na pol ure natančno. Rezultati za posamezne obdelovalne enote so prikazani v prilogah 6-9, sumarni prikaz za glavne rabe pa daje tabela št. 13.

Za delo strojev na električni pogon je značilno, da se vključuje predvsem v fazo predelave njivskih pridelkov (silajna koruza, mlačev) in travinje. Zanimivo je, da približno četrtnino v ta namen porabljene električne energije potroši prevetrovalnik za dosuševanje sena ob neugodnem vremenu.

TABELA 17: Glavne rabe tal - količine vloženega strojnega dela (elektrika) na ha (v kWh)

<table>
<thead>
<tr>
<th>Raba</th>
<th>Površina (ha)</th>
<th>Celotni vložek kWh</th>
<th>Vložek/ha kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gozd</td>
<td>27,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pašnik</td>
<td>4,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Travnik</td>
<td>8,3</td>
<td>459</td>
<td>55,3</td>
</tr>
<tr>
<td>Njiva</td>
<td>1,2</td>
<td>77</td>
<td>64,2</td>
</tr>
<tr>
<td>Ostalo</td>
<td>2,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skupaj</td>
<td>43,8</td>
<td>536</td>
<td>12,2</td>
</tr>
</tbody>
</table>

Tabela št.17 dokazuje, da gre pri uporabi električne energije sicer za sorazmerno majhne, zato pa pomembne energijske vhode, ki nadomeščajo precej človeške delovne sile.

Delež amortizacije električnih strojev kot energijski vložek prikazuje tabela št. 18, skupne vhode dela in amortizacije strojev na električni pogon (po glavnih rabhah tal) pa tabela št. 19.

<table>
<thead>
<tr>
<th>Vrsta stroja</th>
<th>Amort. vrednost (din)</th>
<th>Skupni vložek amortiz. vrednost v kWh</th>
<th>Delež za rabo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kWh</td>
<td>%</td>
<td>kWh</td>
</tr>
<tr>
<td>Siloreznica</td>
<td>20.000</td>
<td>3.878</td>
<td>69</td>
<td>-</td>
</tr>
<tr>
<td>Prevetrovalnik</td>
<td>4.000</td>
<td>772</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Puhalnik</td>
<td>5.000</td>
<td>967</td>
<td>17</td>
<td>-</td>
</tr>
<tr>
<td>Skupaj</td>
<td>29.000</td>
<td>5.617</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Delo</td>
<td>Amortizacija kWh</td>
<td>%</td>
<td>Skupaj kWh/ha</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Gozd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pašnik</td>
<td>4.531</td>
<td>81</td>
<td>601</td>
<td></td>
</tr>
<tr>
<td>Travnik</td>
<td>1.086</td>
<td>19</td>
<td>969</td>
<td></td>
</tr>
<tr>
<td>Ostalo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Skupaj:</td>
<td>5.617</td>
<td>100</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Vrsta stroja</td>
<td>Amort. vrednost (din)</td>
<td>Skupni vložek amortiz. vrednost v kWh</td>
<td>Delež na rabo</td>
<td>Gozd kWh</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Trakt. vile</td>
<td>3.150</td>
<td>612</td>
<td>3,8</td>
<td>100</td>
</tr>
<tr>
<td>Nakladač</td>
<td>21.000</td>
<td>4.073</td>
<td>25,3</td>
<td>75</td>
</tr>
<tr>
<td>Prikolica</td>
<td>2.800</td>
<td>539</td>
<td>3,4</td>
<td>50</td>
</tr>
<tr>
<td>Prikolica</td>
<td>14.000</td>
<td>2.716</td>
<td>16,9</td>
<td>25</td>
</tr>
<tr>
<td>Trosilec</td>
<td>14.000</td>
<td>2.716</td>
<td>16,9</td>
<td>25</td>
</tr>
<tr>
<td>Mlatilnica</td>
<td>17.500</td>
<td>3.395</td>
<td>21,1</td>
<td>75</td>
</tr>
<tr>
<td>Molzni stroj</td>
<td>3.500</td>
<td>679</td>
<td>4,2</td>
<td>100</td>
</tr>
<tr>
<td>Preša</td>
<td>3.500</td>
<td>679</td>
<td>4,2</td>
<td>100</td>
</tr>
<tr>
<td>Snožni plug</td>
<td>3.500</td>
<td>679</td>
<td>4,2</td>
<td>100</td>
</tr>
<tr>
<td>Skupaj</td>
<td>82.950</td>
<td>16.088</td>
<td>100,0</td>
<td>39,7</td>
</tr>
</tbody>
</table>
Precejšen del porabljene električne energije je bil uporabljen za predelavo proizvodov in vzdrževanje gospodarstva.

Celotne energijske vhode, ki jih predstavlja delo naftnih in električnih strojev, njihova amortizacija in amortizirani del strojnih priključkov ter drugih naprav, predstavlja tabela št. 21, ki zgovorno ilustrira pojem "intenzivnosti obdelave" za posamezne rabe tal oz. kulturne ekosisteme - gozd, travnik, njivo.

5.2.2. Šnovni vhodi

Če obravnavamo kot (ekološki sistem ves celek, potem lahko med šnovne vhode štejemo le tiste šnovi, ki niso nastale na celku, ampak prihajajo "od zunaj" - bodisi z nakupom, ali menjavo ipd.

Čeprav gre za šnovne vložke, tudi te vhode lahko obravnavamo kot energijska vlaganja. Tudi te šnovi so namreč nekje izven celka ob svojem nastajanju (proizvodnji) povzročale energijske stroške. Zato tudi pri njih pri oceni njihovega energijskega ekvivalenta izhajamo iz predpostavke, da njihova vrednost oz. cena odražata količino energije, potrebne za njihovo proizvodnjo, manipulacijo itd. Podobno kot pri strojih smo tudi tu energijski ekvivalent računali tako, da smo nabavno ceno artikla (leta 1983) delili s srednjo ceno nafte (48 din za liter), ob upoštevanju, da je energijska vsebnost litra nafte 9,3 kWh.
<table>
<thead>
<tr>
<th>Raba</th>
<th>Naftni stroji delo</th>
<th>Naftni stroji amort.</th>
<th>Električni stroji delo</th>
<th>Električni stroji amort.</th>
<th>Priključki amortiz. kWh</th>
<th>Skupaj kWh</th>
<th>%</th>
<th>kWh/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pašnik</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Njiva</td>
<td>3.882</td>
<td>10.928</td>
<td>77</td>
<td>1.086</td>
<td>6.040</td>
<td>22.013</td>
<td>27.0</td>
<td>18.344</td>
</tr>
<tr>
<td>Ostalo</td>
<td>7</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>2.716</td>
<td>2.736</td>
<td>3.3</td>
<td>1.140</td>
</tr>
<tr>
<td>Skupaj</td>
<td>15.550</td>
<td>43.858</td>
<td>536</td>
<td>5.617</td>
<td>16.088</td>
<td>81.649</td>
<td>100.0</td>
<td>1.864</td>
</tr>
</tbody>
</table>
Med snovne vhode, ki sodelujejo pri primarni proizvodnji rastlinske snovi (za posamezne parcele jih prikazujejo priloge št. 9 – 13), štejemo:

- umetna gnojila
- seme
- zaščitna sredstva.

Njihove vrste in količine prikazuje tabela št. 22, celokupni pregled po rabah pa tabela št. 23.

TABELA 22: Količine in vrste snovnih vhodov po glavnih rabah tal (v kg)

<table>
<thead>
<tr>
<th>Raba Vrsta</th>
<th>Gozd</th>
<th>Pašnik</th>
<th>Travnik</th>
<th>Njiva</th>
<th>Ostalo</th>
<th>Skupaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>UREA</td>
<td>-</td>
<td>270</td>
<td>670</td>
<td>-</td>
<td>-</td>
<td>940</td>
</tr>
<tr>
<td>KAN</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>NPK</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Seme</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>67</td>
<td>1</td>
<td>68</td>
</tr>
<tr>
<td>Zaščit.sred.</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
<td>-</td>
<td>11</td>
</tr>
</tbody>
</table>

TABELA 23: Celokupni energijski vhodi iz snovnih vlaganj

<table>
<thead>
<tr>
<th>Raba tal</th>
<th>Umetna gnojila (kWh)</th>
<th>Seme (kWh)</th>
<th>Zaščitna sredstva (kWh)</th>
<th>Skupaj kWh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gozd</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pašnik</td>
<td>47</td>
<td>-</td>
<td>-</td>
<td>47</td>
<td>3,4</td>
</tr>
<tr>
<td>Travnik</td>
<td>134</td>
<td>-</td>
<td>116</td>
<td>250</td>
<td>17,9</td>
</tr>
<tr>
<td>Njiva</td>
<td>-</td>
<td>779</td>
<td>310</td>
<td>1.089</td>
<td>77,9</td>
</tr>
<tr>
<td>Ostalo</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>12</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Skupaj kWh 181 791 426 1.398 12,9 56,6 30,5 100,0
Oba pregleda kažeta v pogledu snovnih vhodov izjemno zaprt sistem.

Skladno z definicijo tu nismo vključili gnojenja z gnojem (91 m³) in gnojevko (20 m³) - oboje namreč predstavlja notranji krog obračanja snovi.

5.2.3 Tuje delo

Strogo vzeto lahko kot energijski vložek v celek obravnavamo le tuje (najeto ali "posojeno") delo, ne pa delo članov domačega gospodinjstva in domačih delovnih živali.

Energijsko vsebino dela smo ocenili ob naslednjih predpostavkah: ker so v delovnih urah vračunane ne le gospodarjeve ure, ampak tudi tiste, ki so jih opravili gospodinja, stara mati in oba otroka, jemljemo povprečno dnevno porabo energije le 12.600 kJ na osebo ali 4.200 kJ za delo, kar predstavlja 1,2 kWh na dnino ali 0,15 kWh na uro (prim. Anko 1983, str. 218). Konjska dnina je bila ocenjena na 4 kWh (ali 0,5 kWh na uro).

Vložke tujega dela v glavne ekosisteme (vrste proizvodnje) prikazuje tabela št. 25. Za vlaganje v gozd smo upoštevali še 55 tujih ur pri gradnji traktorske vlake, pod "ostalo" pa smo pripisali še 176 tujih ur pri t.i.m. "gospodarskih delih" (popravilo stavb, mlačev, kopanje jarkov, priprava stelje itd.).
TABELA 24: Vlaganje energije v obliki človeškega in živalskega dela

<table>
<thead>
<tr>
<th>Vrsta vlaganj</th>
<th>Človeško delo</th>
<th>Konjsko delo</th>
<th>A + B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lastno</td>
<td>najeto</td>
<td>skupaj</td>
</tr>
<tr>
<td>Vrsta ekosistema</td>
<td>ure</td>
<td>kWh</td>
<td></td>
</tr>
<tr>
<td>Gozd</td>
<td>258</td>
<td>38,7</td>
<td>8</td>
</tr>
<tr>
<td>Pašnik</td>
<td>55</td>
<td>8,2</td>
<td>2</td>
</tr>
<tr>
<td>Travnik</td>
<td>906</td>
<td>135,9</td>
<td>27</td>
</tr>
<tr>
<td>Njiva</td>
<td>640</td>
<td>96,0</td>
<td>19</td>
</tr>
<tr>
<td>Ostalo</td>
<td>414</td>
<td>62,1</td>
<td>12</td>
</tr>
<tr>
<td>Skupaj</td>
<td>2.273</td>
<td>340,9</td>
<td>68</td>
</tr>
</tbody>
</table>
TABELA 25: Glavne rabe tal - vlaganje energije v obliki tujega dela

<table>
<thead>
<tr>
<th>Rabatäl</th>
<th>ur</th>
<th>D</th>
<th>e</th>
<th>l</th>
<th>o</th>
<th>kWh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gozd</td>
<td>84</td>
<td>12,6</td>
<td></td>
<td></td>
<td></td>
<td>8,7</td>
<td></td>
</tr>
<tr>
<td>Pašnik</td>
<td>23</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>Travnik</td>
<td>192</td>
<td>28,8</td>
<td></td>
<td></td>
<td></td>
<td>19,9</td>
<td></td>
</tr>
<tr>
<td>Njiva</td>
<td>397</td>
<td>59,6</td>
<td></td>
<td></td>
<td></td>
<td>41,2</td>
<td></td>
</tr>
<tr>
<td>Ostalo</td>
<td>267</td>
<td>40,0</td>
<td></td>
<td></td>
<td></td>
<td>27,8</td>
<td></td>
</tr>
<tr>
<td>Skupaj</td>
<td>963</td>
<td>144,5</td>
<td></td>
<td></td>
<td></td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Razpored tujega dela kaže, da je njegova uporaba močno odvisna od teže in nujnosti opravila (npr. roki za njivska dela!).

5.2.4 Nabava in amortizacija osnovnih sredstev

Kot energijski vhod v celotni sistem celka obravnavamo tudi nabave osnovnih sredstev. Zaradi njihove raznolikosti je treba vsakemu od njih določiti še t.i. "stroškovno mesto", tj. rabatäl (ekosistem) oziroma vrsto proizvodnje, ki ji je določeno osnovno sredstvo prvenstveno namenjeno.

Energijsko vsebnost osnovnih sredstev smo določili na isti način kot pri prejšnjih postavkah - s tem, da smo ceno artikla delili s ceno nafte (48,00 din/za liter). Energijski vhod, ki ga predstavljajo osnovna sredstva, prikazuje tabela št. 26.
TABELA 26: Nakupi osnovnih sredstev kot energijski vhodi

<table>
<thead>
<tr>
<th>Osnovno sredstvo</th>
<th>Vrednost</th>
<th>kWh</th>
<th>Stroškovno mesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avto</td>
<td>370.000</td>
<td>71.688</td>
<td>ves celek</td>
</tr>
<tr>
<td>Kosilnica</td>
<td>90.000</td>
<td>17.438</td>
<td>travnik</td>
</tr>
<tr>
<td>Obračalnik</td>
<td>50.000</td>
<td>9.688</td>
<td>travnik</td>
</tr>
<tr>
<td>Motorka</td>
<td>23.000</td>
<td>4.456</td>
<td>gozd</td>
</tr>
<tr>
<td>Plemenska svinja</td>
<td>14.100</td>
<td>2.732</td>
<td>hlev</td>
</tr>
<tr>
<td>Kokoši nesnice</td>
<td>1.120</td>
<td>217</td>
<td>hlev</td>
</tr>
<tr>
<td>Piščanci</td>
<td>600</td>
<td>116</td>
<td>hlev</td>
</tr>
<tr>
<td>Skupaj</td>
<td>548.820</td>
<td>106.335</td>
<td></td>
</tr>
</tbody>
</table>

Energijski vhod za ves celek predstavlja tudi amortizacijo ostalih osnovnih sredstev. Pri tem bomo upoštevali le amortizacijo tistih sredstev, ki pomenijo direkten energetski strošek, ne pa npr. amortizacijo osnovne živinske črede, katere proizvodnja predstavlja t.i.m. notranji energijski tok. Amortizacijska stopnja v tem primeru znaša 3% (GLIHA in dr., 1980, str. 24). Amortizacijo naftnih in električnih strojev ter priključkov smo izračunali že v poglavju 5.2.1, zato bomo tu obravnavali le amortizacijo stavb in cest, ki jo prikazuje tabela št. 27.
TABELA 27: Amortizacija stavb in cest kot energijski vhod

<table>
<thead>
<tr>
<th>Osnovno sredstvo</th>
<th>Vrednost din</th>
<th>Amort. vrednost kWh</th>
<th>Stroškovno mesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 m gozd.kam.ceste</td>
<td>1,000,000</td>
<td>30,000</td>
<td>5.813</td>
</tr>
<tr>
<td>2700 m vlak</td>
<td>670,000</td>
<td>20,100</td>
<td>3.894</td>
</tr>
<tr>
<td>stan.hiša</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hlev-senik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silosi (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>svinjak</td>
<td>5,000,000</td>
<td>150,000</td>
<td>29.063</td>
</tr>
<tr>
<td>kovačnica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>čebelnjak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gnojišče</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skupaj</td>
<td>6,670,000</td>
<td>200,100</td>
<td>38.770</td>
</tr>
</tbody>
</table>

V tabeli smo zaradi poenostavitve izračuna upoštevali kot da celotno delo in gradbeni material predstavljata energijski vhod, ki prihaja od zunaj (sistema).

5.2.5 Nakupi, potrebni za vzdrževanje gospodinjstva in gospodarskega obrata

Spremenjeni načini proizvodnje in življenja na celku ga kot sistem vse bolj odpirajo v snovnem oz. energijskem pogledu. S tem nastajajo energijski tokovi, ki jih na celku pred poldrugim stoletjem še ni bilo. Snovne (energijske) vhode, ki jih je bilo lahko točno opredeliti po stroškovnem mestu, smo obravnavali v poglavju 5.2.2. Tu obravnavamo vhode, ki so pomembni za vzdrževanje celotnega gospodinjstva (hrana, obleka, obutev) in gospodar-
stva (repronmaterial - rezervni deli, krmila, itd.). Prikazuje jih tabela 28.

TABELA 28: Energijski vhodi za vzdrževanje gospodinjstva in gospodarstva

<table>
<thead>
<tr>
<th>Vhod</th>
<th>Vrednost (din)</th>
<th>Energijska vsebnost kwh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hrana</td>
<td>44.464</td>
<td>8.615</td>
<td>15</td>
</tr>
<tr>
<td>Obleka, obutev</td>
<td>53.700</td>
<td>10.404</td>
<td>16</td>
</tr>
<tr>
<td>Repromaterial</td>
<td>196.080</td>
<td>37.991</td>
<td>61</td>
</tr>
<tr>
<td>Krmila</td>
<td>25.440</td>
<td>4.929</td>
<td>8</td>
</tr>
<tr>
<td>Skupaj</td>
<td>319.684</td>
<td>61.939</td>
<td>100</td>
</tr>
</tbody>
</table>

Podatki so bili zbrani z beleženjem vseh nakupov. Iz njih je razvidna stopnja samooskrbnosti s hrano - kupujejo predvsem le sladkor, olje, pšenično moko, zgodnejše sadje in zelenjavo. V "reprodukcijem materialu" so zajeti predvsem rezervni deli za stroje, nafto, gnojila in zaščitna sredstva smo že obravnavali v zvezi z glavnimi rabami tal, posebej pa so izkazana krmila, ki se vključujejo v notranji tok (hlevske) proizvodnje.

Energijsko vsebnost teh vhodov smo računali na enak način kot pri ostalih vhodih (48 din liter nafte, 9,3 kwh liter nafte). Očitno ta metoda odpove pri kvalitetnejših vhodih (hrane), kar sicer (vključeno v notranje tokove) rezultatov raziskave ne spreminja bistveno, opozarja pa na potrebo nadaljnjih raziskav v tej smeri - predvsem pa na neuravnotežena razmerja med vloženo energijo in energijsko vsebnostjo pridobljene hrane.
5.2.6 **Krediti, subvencije**

Če sprejememo predpostavko, da je razširjena reprodukcija na cel-ku (pa tudi drugod) mogoča le iz presežnega dela posebnih, za trg zanimivih oblik energije (npr. les, hrana), potem je očitno, da kot energijski vhod lahko obravnavamo tudi vse finančne vho-đe, ki sicer niso neposredno povezani s tržno proizvodnjo, jo pa vzpodbujajo, ali celo omogočajo. Tipičen vhod take vrste so krediti. Namensko vloženi vzpodbujajo tržno proizvodnjo, ki je po-trebna za njihovo odplačevanje. Medsebojne povezave med kredi- tom - vhodom in energijskim izhodom, ki je namenjen vračanju po-sojila, zlasti na celku prispeva k preobrazbi proizvodnje, nači- na premišljanja, gospodarskih odnosov - življenja nasploh več, kot v dano proizvodnjo vloženi denar sam po sebi. Tega se naš kmet zaveda in del odporov proti najemanju kreditov, brez katerih ostali gospodarski sektorji ne morejo več obstajati, je v zasebnem kmetijstvu iskati tudi v tem. Drugi del te problemati- ke predstavlja polpretekla (in novejša) kreditna politika do za-sebnega sektorja v kmetijstvu.

Podoben vhod predstavljajo subvencije oz. premije za določene vr-ste tržne proizvodnje. Same po sebi sicer nimajo neposredne po-vezave s proizvodnjo. So rezultat agrarno političnih ukrepov, za katere se odloča neka družba, ki potrebuje določen proizvod - ali kmeta na zemlji.

Tabela 29: Odplačani krediti in izplačane premije kot energijski vhodi

<table>
<thead>
<tr>
<th></th>
<th>Din</th>
<th>kWh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krediti</td>
<td>29.000</td>
<td>5.619</td>
<td>51</td>
</tr>
<tr>
<td>Subvencije</td>
<td>27.900</td>
<td>5.397</td>
<td>49</td>
</tr>
<tr>
<td>Skupaj</td>
<td>36.900</td>
<td>11.016</td>
<td>100</td>
</tr>
</tbody>
</table>

Energijsko vsebnost te vrste vhodov smo izračunali po enakih kriterijih kot za stroje in ostalo blago (1 liter nafte 48 din in 9,3 kWh). Po velikosti se ta vhod močno približuje energijski vrednosti vloženega dela, kar priča o pomembnosti agrarnopolitičnih ukrepov za razvoj (ali stagnacijo in propad) hribovske kmetije.
5.3 UPORI

Ocene in izračuni energijskih vhodov v sistem celka že ob površini primerjava z energijsko vsebnostjo uporabnih izhodov opozore na velike razlike med energijskima kategorijama vhod - izhod.

Vsa-kmetijska proizvodnja je v bistvu pretvarjanje sončne (in umetno uvedene) energije v izbrane oblike kemične energije - predvsem v hrano.

Velike razlike med vhodi in (koristnimi) izhodi je mogoče razlagati z drugim termodinamskim zakonom, po katerem noben proces, povezan s preobrazbo energije ne poteka spontano, če pri tem energija ne prehaja iz koncentrirane oblike v razpršeno.

S problemom uporov v (kmetijski) proizvodnji se v ožjem smislu doslej ni ukvarjal še nihče; tudi tu jih obravnavamo le okvirno. Podrobnejša obdelava bi presegala okvir naloge.

Zdi se, da se upori ne pojavljajo le v zvezi z biološkimi in fizikalnimi zakonitostmi, ampak da nastopajo tudi v družbeno gospodarskih dogajanjih v širšem okolju celka - in tudi v samem človeku - posamezniku. Zato jih lahko delimo v tri velike skupine:
1. naravni upori
2. družbeno gospodarski upori
3. osebni upori.

O naravnih uporih govorimo, kadar naravna stanja ali zakonitosti povzročajo energijske izgube oz. prehode energije v neizkoristljive ali neposredno neuporabne oblike energije.

Prva skupina naravnih vhodov je neposredno vezana na sončno ener-
gijo. Jakost toka energije, ki dospe na gornjo mejo atmosfere (solarna konstanta - 6122 kWh/m² letno) upade do Zemljinega površja za dobrih 80 odstotkov. Pri globalnem obsevanju za bližnji Duh na Ostrem vrhu (1.153 kWh/m² letno) znaša ta oslabitev 81,2% za povprečno kvaziglobalno obsevanje na obravnavanem celku (prim. tab. št. 11) pa 82,6%.

Drug veliki upor nastopa zaradi spektralne zgradbe samega sevanja. Le 45% vsega žarčenja je v vidnem delu spektra (4 - 7 x 10⁻⁷ m), ki neposredno sodeluje pri fotosintezi.

Upori pri izradi vidnega dela sončnega sevanja so seveda pogoje- ni tudi s fiziologijo posameznih rastlinskih vrst, ki zelo različno izkoriščajo zelo ozko omejene dele spektra, tako da niti kratkovalovno območje sevanja ni enotno izrabljeno.

Pomemben upor predstavlja tudi respiracija rastlin, ki se giblje med 20 in 55 odstotki bruto primarno proizvodnje, pri živalski proizvodnji pa nastopajo veliki upori zaradi prehajanja energije s prve trofestne stopnje na drugo. Te izgube običajno cenimo na 90%.
V določenem smislu predstavlja upor tudi razlika med celotno proizvedeno (rastlinsko) organsko snovjo in tistim delom, ki je za človeka uporaben (neposredno koristen). Večji del energije in snovi, ki ga ta razlika predstavlja se preko notranjih tokov sistema res vrača v primarno proizvodnjo, vendar je njegova energijska cena tako visoka, da si prizadevamo, da bi to razliko čim bolj zmanjšali.

Zanimiv in nesproučen je tudi upor, ki ga ob najrazličnejšem delu, predvsem pa pri transportih predstavlja naklon terena. V grobem lahko računamo, da ta raste s sinusom naklonskega kota. Pri povprečnem nagibu obravnavanega celka 27°, bi ta upor znašal približno 45%. Zanimivo je, da so včasih na hribovskih kmetijah prav ta upor upoštevali - z izbiro lege doma v gornjem delu agrarnega jedra - zaradi težkih prevozov gnoja.

Določen upor predstavljajo tudi (razmeroma slabi) izkoristki kmetijskih strojev.

Drugo veliko skupino uporov predstavljajo takoimenovani družbeno gospodarski upori. Njih je praktično nemogoče izraziti v količinah energije, čeprav je očitno, da močno vplivajo na proizvodnost kmetijstva. V to skupino štejemo skup dejavnikov - stanj in procesov, ki ustvarjajo pogoje za razvitost in uspešnost kmetijstva. Mednje bi šteli npr. splošni razvoj proizvajalnih sredstev, lastniške odnose, velikost kmetij (optimalno izkoriščanje delovnih sredstev in delovnega časa), organizacijo dela (število zaposlenih), usmerjenost proizvodnje, tržne pogoje (nabava osnovnih sredstev, repromateriala in prodaja pridelkov), splošno družbeno klimo do kmetijstva, itd. - skratka sklop dejavnikov, ki lahko bistveno vplivajo na razvoj in uspešnost kmetijske proizvodnje.

Tretjo skupino smo poimenovali osebni upori - lahko bi jih imenovali tudi psihološki upori. Izvirajo namreč večinoma iz človeka - posameznika - gospodarja ali ostalih družinskih članov. Sloga ali
nesoglasja med družinskimi člani, izobrazbena raven, splošna razgledanost, sprejemljivost za novosti, (ne)prepričanost o perspektivi kmetovanja zase in naslednike, alkoholizem, pomanjanje nasledstva, občutek osamljenosti - vse to so tudi upori, ki preprečujejo optimalno gospodarjenje, k njim pa lahko štejemo še starost, bolezen ali okrnjeno strukturo družine itd.

študij uporov je za napredek (ekološko zdravega) kmetijstva ne-obhodno potreben. Šele ob njem nam postane jasno, zakaj se v primarni proizvodnji koristno veže manj kot pol odstopka prispele energije - pa tudi, kaj je treba storiti ob tej kaskadi energije, ki se pretaka skozi sistem, da bi bila korist od nje večja.

čeprav gornja delitev uporov verjetno ni dokončna in še manj popolna, postane ob njej jasno, da obstajajo upori, ob katerih je človek nemočen (npr. spektralna sestava sončnega sevanja), da so nekateri, ki jih z dolgotrajnim načrnim delom lahko zmanjša (npr. vzgoja klimatskim pogojem ustreznih ras), da je za odpravljanje nekaterih (družbeno ekonomskih) potrebna obsežna družbenega akcija in da je za odpravljanje osebnih edino mogoče sredstvo včasih le človeška beseda, vedno pa pošten, zavzet in iskren odnos do kmeta in njegovih hotenj.
5.4 PROIZVODNJA

Večina analiz kmetijske proizvodnje se ukvarja le s proizvodnjo tržno zanimive organske snovi (hrane, krmil, živalske organske snovi). Z ekološkega vidika, zlasti če upoštevamo pomen stabilnosti, trajnosti, (ne)odprtosti itd. antropogenih kmetijskih sistemov, je izjemno pomembna tudi proizvodnja organske snovi, ki se sicer ne pojavlja kot blago, ampak se vrača v sisteme, kjer je nastala, ali pa se v obliki notranjih tokov premešča med kulturnimi ekosistemi in omogoča njihov obstoj (vsaj dolgoročno). Zato bomo v tej zvezi obravnavali celokupno proizvodnjo posameznih ekosistemov - s posebnim poudarkom na neposredno uporabni organski snovi. Kategorije proizvodnje organske snovi, ki jih bomo torej obravnavali, bodo zajemale:

a) podzemno snov (lesnatih in zelnatih rastlin)
b) nadzemno snov
 - opad
 - ostalo neposredno neuporabno snov (živalska hrana)
 - neposredno uporabno snov (les, človeška hrana).

Vse navedene količine se nanašajo na suho snov s povprečno kalorično vrednostjo 5,23 kWh/kg za vse rastline, 6,05 samo za semena, in 6,51 kWh/kg za vretenčarje (Odum, 1971, str. 39).

V analizi proizvodnje smo se omejili predvsem na rastlinsko proizvodnjo. Analiza živalske proizvodnje (ki bi bila prav tako zanimiva) namreč že šteje v notranje tokove in bi presegla obseg te naloge, tako da jo bomo obravnavali le okvirno.

5.4.1 Proizvodnja gozda

Proizvodnjo gozda lahko v danem primeru le ocenjujemo. Osnovo za oceno predstavljajo gozdarski podatki (iz polne premerbe)
o lesnih zalogah in prirastku ter značilnosti rastišč (višinski tip gozda bukve z belkasto bekico, gozd bukve z belkasto bekico in javorjem, gozd plemenitih listavcev - v približnem razmerju 4 : 4 : 2) - (Travar, 1981, str. 7-12).

Na osnovi teh parametrov smo s primerjavo z Duvigneaudovimi podatki (1971, str. 266-268) ocenili tudi ostalo proizvodnjo (prim. tab. 30). Proizvodnjo podzemne snovi predstavljata proizvodnja lesnatih rastlina (1720 kg/ha) in proizvodnja zelišč (430 kg).

Opad predstavljajo vejice, listje, iglice, cvetovi, luske in zelišča (2.500 kg/ha). Neposredno neuporabno snov predstavljajo vejice in proizvodnja grmovnega sloja (630 kg). Neposredno uporabno snov predstavljata hlodovina. Računajoč s specifično težo 440 kg/m³ za popolnoma suho smrekovino in 570 kg/m³ za bukovino (Šafar, 1946, str. 1227), njena teža pri prirastku 5,9 m³ za iglavce in 0,5 za listavce znaša 2.881 kg/ha.

Skupna letna nadzemna proizvodnja torej znaša približno 6.000 kg/ha, celokupna letna proizvodnja pa približno 8.100 kg na hektar ali 4,24 kWh/m² gozda. Zaradi načina odvzema rastlinske snovi v gozdu, obravnavamo vse gozdne površine kot eno samo parcelo.

5.4.2 Proizvodnja pašnika

Zaradi intenzivne priprave je pašniki na obravnavani kmetiji močno primerjati s travniki. Grmovja praktično ni, ruša je negovana (občasno košena in gmojena) - edina razlika je v nekoliko večji strmini terenov in z njo povezani občasni sušnosti (prim. graf. št. 3).

Podrobne analize sestave travnih in drugih zeliščnih vrst nismo delali, vendar pri površnem pregledu bistvenih razlik ni opaziti -
<table>
<thead>
<tr>
<th>Vrsta snovi</th>
<th>(277,190 m²)</th>
<th>(59,240 m²)</th>
<th>(65,337 m²)</th>
<th>(12,062 m²)</th>
<th>(23,572 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/m²</td>
<td>kWh/m²</td>
<td>%</td>
<td>kg/m²</td>
<td>kWh/m²</td>
</tr>
<tr>
<td>Podzemna snov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- lesnate rastline</td>
<td>0,21</td>
<td>1,10</td>
<td>26</td>
<td>0,30</td>
<td>1,57</td>
</tr>
<tr>
<td>- zeli</td>
<td>0,17</td>
<td>0,89</td>
<td>21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nadzemna snov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- opad</td>
<td>0,60</td>
<td>3,14</td>
<td>74</td>
<td>0,53</td>
<td>2,77</td>
</tr>
<tr>
<td>- neposredno neuporabna</td>
<td>0,25</td>
<td>1,31</td>
<td>31</td>
<td>0,11</td>
<td>0,57</td>
</tr>
<tr>
<td>- neposredno uporabna</td>
<td>0,06</td>
<td>0,31</td>
<td>7</td>
<td>0,42</td>
<td>2,20</td>
</tr>
<tr>
<td>Proizvodnja/m²</td>
<td>0,81</td>
<td>4,24</td>
<td>100</td>
<td>0,83</td>
<td>4,34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proizvodnja na vsej površini</th>
<th>224,542</th>
<th>1,175,286</th>
<th>49,169</th>
<th>257,154</th>
<th>59,457</th>
<th>310,958</th>
<th>27,260</th>
<th>145,226</th>
<th>8,250</th>
<th>47,851</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>61</td>
<td>13</td>
<td>16</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Letna proizvodnja rastlinske snovi na vsej površini celka 437,401 m² je znašala 1,936,475 kWh.
navsezadnje je bila večina sedanjih pašnih površin v preteklosti v intenzivnejši rabi (kot njiva ali travnik).

Zato ocenjujemo, da letna proizvodnja rastlinske snovi na pašniku znaša približno 87% travniške proizvodnje (prim. tab. 30) in da je okvirno enaka v vseh obravnavanih kategorijah rastlinske snovi - razen v deležu opada, ki je večji (25% nadzemne proizvodnje) zaradi selektivne paše in teptanja zelišč oz. ruše.

5.4.3 Proizvodnja travnika

Zanimiva je tudi ugotovitev, da je bila proizvodnja travnikov v letu 1982 (kontrolno vzorčenje) le 79% proizvodnje leta 1983, kar je po občutku potrdil tudi gospodar. Razliko bi bilo mogoče
TABELA 31: Proizvodnja travinj 1983 (velikost vzorčnih ploskev 0,125 m²)

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Št. točke parc.</th>
<th>Leto</th>
<th>Kultura</th>
<th>Št. vzorca</th>
<th>Datum</th>
<th>Teža odkosa vzorca</th>
<th>kg/ha v letu</th>
<th>Teža skupaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1</td>
<td>26</td>
<td>1983</td>
<td>pašnik</td>
<td>28</td>
<td>17.V.</td>
<td>17,65</td>
<td>1.412</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>32</td>
<td>1983</td>
<td>pašnik</td>
<td>32</td>
<td>27.VII.</td>
<td>45,85</td>
<td>3.668</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>36</td>
<td>1983</td>
<td>pašnik</td>
<td>36</td>
<td>6.IX.</td>
<td>9,80</td>
<td>784</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>44</td>
<td>1983</td>
<td>pašnik</td>
<td>44</td>
<td>7.X.</td>
<td>13,05</td>
<td>1.044</td>
<td>6.908</td>
</tr>
<tr>
<td>2. 2</td>
<td>26</td>
<td>1983</td>
<td>pašnik</td>
<td>25</td>
<td>17.V.</td>
<td>28,80</td>
<td>2.304</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>31</td>
<td>1983</td>
<td>sadovnjak</td>
<td>31</td>
<td>27.VII.</td>
<td>38,95</td>
<td>3.116</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>37</td>
<td>1983</td>
<td>sadovnjak</td>
<td>37</td>
<td>6.IX.</td>
<td>29,35</td>
<td>2.348</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>46</td>
<td>1983</td>
<td>sadovnjak</td>
<td>46</td>
<td>7.X.</td>
<td>35,90</td>
<td>2.872</td>
<td>10.640</td>
</tr>
<tr>
<td>8.</td>
<td>3</td>
<td>25</td>
<td>1983</td>
<td>29</td>
<td>17.V.</td>
<td>32,15</td>
<td>2.572</td>
<td></td>
</tr>
<tr>
<td>9. 3</td>
<td>12</td>
<td>1983</td>
<td>travnik</td>
<td>26</td>
<td>17.V.</td>
<td>33,35</td>
<td>2.668</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>41</td>
<td>1983</td>
<td>travnik</td>
<td>41</td>
<td>6.IX.</td>
<td>28,55</td>
<td>2.284</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>43</td>
<td>1983</td>
<td>travnik</td>
<td>43</td>
<td>7.X.</td>
<td>24,65</td>
<td>1.972</td>
<td>10.868</td>
</tr>
<tr>
<td>12.</td>
<td>26</td>
<td>1983</td>
<td>travnik</td>
<td>26</td>
<td>17.V.</td>
<td>33,35</td>
<td>2.668</td>
<td></td>
</tr>
<tr>
<td>13. 4</td>
<td>12</td>
<td>1983</td>
<td>travnik</td>
<td>30</td>
<td>27.VII.</td>
<td>41,20</td>
<td>3.296</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>39</td>
<td>1983</td>
<td>travnik</td>
<td>39</td>
<td>6.IX.</td>
<td>22,30</td>
<td>1.784</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>42</td>
<td>1983</td>
<td>travnik</td>
<td>42</td>
<td>7.X.</td>
<td>22,30</td>
<td>1.784</td>
<td>9.532</td>
</tr>
<tr>
<td>16.</td>
<td>27</td>
<td>1983</td>
<td>pašnik</td>
<td>27</td>
<td>17.V.</td>
<td>35,56</td>
<td>2.848</td>
<td></td>
</tr>
<tr>
<td>17. 5</td>
<td>33</td>
<td>1983</td>
<td>pašnik</td>
<td>33</td>
<td>27.VII.</td>
<td>36,70</td>
<td>2.936</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>38</td>
<td>1983</td>
<td>pašnik</td>
<td>38</td>
<td>6.IX.</td>
<td>17,65</td>
<td>1.412</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>47</td>
<td>1983</td>
<td>pašnik</td>
<td>47</td>
<td>7.X.</td>
<td>26,05</td>
<td>2.084</td>
<td>9.280</td>
</tr>
<tr>
<td>Zap. št.</td>
<td>št. parc.</td>
<td>Površina</td>
<td>silaža seno kg</td>
<td>silaža otava kg</td>
<td>seno kg</td>
<td>otava kg</td>
<td>paša kg</td>
<td>sveža trava kg</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>1.</td>
<td>1</td>
<td>4.449</td>
<td>1.600</td>
<td></td>
<td></td>
<td></td>
<td>2.700</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>4.628</td>
<td>1.200</td>
<td>1.800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>4.165</td>
<td>400</td>
<td>1.200</td>
<td>1.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>4.198</td>
<td>1.800</td>
<td></td>
<td></td>
<td></td>
<td>2.100</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>6</td>
<td>8.033</td>
<td>2.400</td>
<td>1.200</td>
<td></td>
<td></td>
<td>2.400</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>7</td>
<td>4.298</td>
<td>1.200</td>
<td>1.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>8</td>
<td>926</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>9</td>
<td>4.157</td>
<td>1.400</td>
<td>1.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>10</td>
<td>3.048</td>
<td>600</td>
<td>1.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>11</td>
<td>4.793</td>
<td>2.400</td>
<td></td>
<td></td>
<td></td>
<td>1.600</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>12</td>
<td>3.240</td>
<td>1.500</td>
<td>1.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>13</td>
<td>8.232</td>
<td>2.100</td>
<td>4.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>18</td>
<td>1.356</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>20</td>
<td>3.094</td>
<td>1.200</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>21</td>
<td>4.760</td>
<td>2.100</td>
<td>1.400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>30</td>
<td>9.818</td>
<td>2.100</td>
<td>4.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>40</td>
<td>10.000</td>
<td>3.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Skupaj 83.195

<table>
<thead>
<tr>
<th>Zračno suho</th>
<th>9.000</th>
<th>5.200</th>
<th>16.800</th>
<th>15.800</th>
<th>9.600</th>
<th>600</th>
<th>57.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>41.422</td>
<td>23.932</td>
<td>77.320</td>
<td>72.718</td>
<td>44.183</td>
<td>2.761</td>
<td>262.337</td>
</tr>
</tbody>
</table>
pripisati ugodnejši vegetacijski dobi v letu 1983 (prim. graf.1).

Na večini parcel gre za en odkos sena in eno košnjo otime. Izjemamo so le parcele:
št. 1 - dve košnji otime
št. 13 - paša, košnja, paša
št. 30 - paša, košnja, paša
št. 40 - le ena (pozna) košnja.

če znaša torej povprečna proizvodnja travnika 0,60 kg/m² (prim. tab. 32) in znaša opad 10% te proizvodnje, cenimo skupno nadzemno proizvodnjo na 0,66 kg/m². Količino podzemne proizvodnje smo ocenili po literaturi (prim. Ellenberg, Runge, 1971, str. 63-65).

5.4.5 Proizvodnja njive

Osnovna vloga njive je fiksiranje sončne energije v obliko kemične energije, ki služi kot hrana človeku in domačim živalim.

V primerjavi z gozdnim in travniškim rastlinjem imajo njivsko rastline drugačno značilo (ki potencira želene del rastline) in življenjski cikel. Zato jih je bilo le težko uvrstiti v ustrezne rubrike pregledne tabele št. 30. Pri obdelavi podatkov, ki so bili dobli s tehtanjem in merjenjem pridelkov (oboje je opravil gospodar) smo izhajali iz naslednjih predpostavk:
- pri njivski proizvodnji znaša opad 10 odstotkov - to so rastlinski deli, ki ostanejo po opravilu na njivi
- vlažnost zrnja (rž, koruza) znaša 20%
- vlažnost slamne (rž, koruza) znaša 30%
- vlažnost silaže znaša 40%
- vlažnost okopavina (krompir, pesa, korenje, koleraba) znaša 50%
energijska vsebnost vse suhe rastlinske snovi znaša 5,23 kWh/kg,
semenja (rženo, koruzno zrnje) pa 6,05 kWh/kg.

Kot najbolj oplemenitene oblike rastlinske snovi smo posebej obravnavali tiste, ki so primerne za človeško prehrano ("neposredno uporabna snov") oz. jih je običajno tudi najlažje podati (je primerna za snovne in energijske izhode). Rastlinska snov iz kategorije "neposredno neuporabna" se preko notranjih tokov (živinska proizvodnja) čez čas spet v dobršnem delu vrača na njivo.

Zaradi neprimerljivosti posameznih kulturnih rastlin prikazujemo podatke o njihovih pridelkih posebej (tab. 33, 34, 35). Hektarski donosi so sicer nekoliko višji kot povprečni, ki jih navaja literatura (prim. Gliha, 1980, str. 51-54), vendar je treba upoštevati, da so njivske površine majhne, najboljše od vseh nekdanjih njiv in bogato gnojene ter skrbno obdelane.

Ker gre pri njivski proizvodnji za enoletne rastline, pri njih v tabeli št. 30 ne navajamo kategorije "podzemna snov".

5.4.6 Proizvodnja ostalih površin

To kategorijo predstavlja 23.572 m² površin, ki jih sestavljajo sadovnjaki (7.537 m²), dve manjši zagrljeni površini (464 m²) in neplodna površina dvorišča oz. cest (15.571 m²).

Najpomembnejša je proizvodnja v sadovnjaku. Poleg 1.100 kg sena, je sadovnjak dal, po gospočarjevi oceni še 4.500 kg sadja, v njem pa so tudi pasli. Gre za dobre, dobro gnojene travne površine, katerih proizvodnja je enaka travniški. To je potrdo tudi vzorčenje travinja. Drevesna masa predstavlja - približno desetino gozdne.
TABELA 33: Proizvodnja rži 1983

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Površina</th>
<th>Sveži pridelek</th>
<th>Suhi pridelek</th>
<th>Suhi opad</th>
<th>Skupaj suha snov</th>
</tr>
</thead>
<tbody>
<tr>
<td>št. parc.</td>
<td>m²</td>
<td>(kg)</td>
<td>kg</td>
<td>kWh</td>
<td>kg</td>
</tr>
<tr>
<td>1.</td>
<td>2</td>
<td>2.394</td>
<td>980</td>
<td>784</td>
<td>4.743</td>
</tr>
</tbody>
</table>

----- Neposredno uporabna snov (hrana)
* všteta slama
<table>
<thead>
<tr>
<th>Zap. št. parc.</th>
<th>Površina (m²)</th>
<th>Sveži pridelek (kg)</th>
<th>Suhi pridelek</th>
<th>Suhi opad</th>
<th>Skupaj suhi opad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>kg</td>
<td>kWh</td>
<td>kg</td>
</tr>
<tr>
<td>1.</td>
<td>14</td>
<td>3.041</td>
<td>14.000<sup>1)</sup></td>
<td>8.400</td>
<td>43.932</td>
</tr>
<tr>
<td>2.</td>
<td>17</td>
<td>3.438</td>
<td>3.500<sup>2)</sup></td>
<td>2.800</td>
<td>16.940</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.500<sup>3)</sup></td>
<td>5.950</td>
<td>31.119</td>
</tr>
<tr>
<td>Skupaj</td>
<td>6.479</td>
<td>26.000</td>
<td>17.150</td>
<td>91.991</td>
<td>1.435</td>
</tr>
</tbody>
</table>

1) silaža
2) zrnje
3) slama

---- Neposredno uporabna snov (hrana)
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Površina</th>
<th>Kultura</th>
<th>Sveži pridelek (kg)</th>
<th>Suhi pridelek</th>
<th>Suhi opad</th>
<th>Skupaj suha snov</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>št. parc.</td>
<td>m²</td>
<td></td>
<td>kg</td>
<td>kWh</td>
<td>kg</td>
</tr>
<tr>
<td>1.</td>
<td>16</td>
<td>926</td>
<td>krompir</td>
<td>2.410</td>
<td>1.205</td>
<td>6.302</td>
</tr>
<tr>
<td>2.</td>
<td>38</td>
<td>1.350</td>
<td>krompir</td>
<td>3.570</td>
<td>1.785</td>
<td>9.336</td>
</tr>
<tr>
<td>3.</td>
<td>28</td>
<td>529</td>
<td>pesa, koruza</td>
<td>2.220</td>
<td>1.110</td>
<td>5.805</td>
</tr>
<tr>
<td>4.</td>
<td>39</td>
<td>80</td>
<td>koleraba</td>
<td>600</td>
<td>300</td>
<td>1.569</td>
</tr>
</tbody>
</table>

Skupaj: 2.885 kg, 8.800 kWh, 23.015 kg, 441.205 kWh, 4.841 kg, 25.319 kWh

----- neposredno uporabna snov (hrana)
Proizvodnja grmišča na kvadratni meter je po količini okvirno vsaj enaka proizvodnji gozda, čeprav zaenkrat nima gospodarsko najpomembnejše kategorije - hlo dovine (oz. neposredno uporabne snovi). Zaradi majhne površine je praktično zanemarljiva. Površine dvorišča (s stavbiščem) in cest so neplodne. Če upoštevamo, da predstavljajo te površine dobre 3% vse kmetije, potem proizvodne izgube zaradi njih niti niso majhne.

Sorazmerno velik delež neplošnih površin znižuje tudi povprečje proizvodnje za to kategorijo v tabeli 30.

5.4.7 Analiza rastlinske proizvodnje

Od kolonizacije naprej je rastlinska proizvodnja glavna (ekološka) funkcija celca v kulturni krajini. Rastlinska proizvodnja je bila na teh površinah že prej - in to še bogata. V tej zvezi je zato predvsem pomembno vprašanje kakovosti proizvedene rastlinske snovi, oziroma njene ustreznosti za kritje osnovnih človekovih potreb po hrani, lesu, živinski krmiri itd.

Preglej proizvodnje po teh kategorijah daje tabela 36. Morda so najbolj zanimive naslednje ugotovitve:
- da neposredno uporabna snov (les, hrana, predstavljata slabo četrtino vse rastlinske proizvodnje
- da rastlinska hrana predstavlja komaj 2 odstotka vse rastlinske proizvodnje
- da se več kot polovica organske snovi (podzemna snov, opad) takoj vrača v kroženje hranilnih snovi, oz. služi vzdrževanju osnovnih ekosistemov in da je v tem primeru ta odstotek najnižji na njivi (potreba po organskem gnoju!)
- da znaša količina organske snovi, namenjena živinski krmri 23%
TABELA 36: Analiza rastlinske proizvodnje na celku

<table>
<thead>
<tr>
<th>Vrsta snovi</th>
<th>kWh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neposredno uporabna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rastlinska snov</td>
<td>466.396</td>
<td>24</td>
</tr>
<tr>
<td>- les</td>
<td>421.329</td>
<td>22</td>
</tr>
<tr>
<td>- rastlinska hrana</td>
<td>45.067</td>
<td>2</td>
</tr>
<tr>
<td>Neposredno neuporabna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rastlinska snov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(živinska krma)</td>
<td>444.792</td>
<td>23</td>
</tr>
<tr>
<td>Snov za vzdrževanje ekosistemov</td>
<td>1,025.287</td>
<td>53</td>
</tr>
<tr>
<td>Skupna proizvodnja</td>
<td>1,936.475</td>
<td>100</td>
</tr>
</tbody>
</table>
vse rastlinske proizvodnje. (Prodana živina z energijsko vsebnostjo 61.952 kWh (prim. tab. 37) potem takem predstavlja 3,2% energijske vrednosti vse rastlinske proizvodnje - ali 14% vse proizvedene živinske krme

- da skupna proizvodnja rastlinske snovi znaša 0,415 odstotka naravnih vhodov

- da je proizvodnja lesa absolutno vzeto najpomembnejša postavka v energijskih izhodiš.
5.5 ENERGIJSKI IZHODI

Vsa energija, ki vstopa v ekološki sistem, ga prej ali slej tudi zapusti. V tej zvezi nas zanima predvsem oblika, v kateri energija sistem zapušča, oz. njeno poreklo.

Celoten pregled energijskih izhodov daje tabela št. 37.

Ker je pri večini izhodov (razen rastlinske hrane, živine in lesa) mesto izhoda praktično nemogoče opredeliti, ima ta tabela drugačen format kot pregledi vhodov.

Pod pojem naravni izhodi za namene te naloge razumemo vso energijo, ki je sistem zapustila, ne da bi z njo manipuliral človek. Za praktične namene to energijo predstavlja razlika med naravnimi vhodi (466,415.000 kWh - tab. 38) in neto rastlinsko proizvodnjo (1,936.475 kWh), ki znaša 464,478.525 kWh ali 99,95% vse prispeve energije.

Na ta način smo tudi izračunali fotosintetsko učinkovitost (izkoristek celka), ki znaša 0,415%, kar se ujema s podatki iz literature.

V primerjavi s posameznimi umetnimi so naravni izhodi za 3 - 5 velikostnih redov večji, zato moramo umetne izhode obravnavati posebej.

Umetni izhodi (delo, snovni izhodi, dajatve - prispevki) znašajo 370.945 kWh, kar predstavlja 19,16% vse rastlinske proizvodnje ali 0,80% vseh naravnih izhodov.

V kategorijo "delo za druge" štejemo 51 ur ročnega dela, 20 ur dela z malim traktorjem (23,5 kWh) in 231 dela z velikim traktorjem (oranje!), ki ima moč 47,8 kWh.
TABELA 37: Pregled energijskih izhodov (v kWh)

<table>
<thead>
<tr>
<th></th>
<th>kWh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. NARAVNI IZHODI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(razlika med naravnimi vhodi in rastlinsko proizvodnjo)</td>
<td>464,478,525</td>
<td></td>
</tr>
<tr>
<td>B. UMETNI IZHODI</td>
<td></td>
<td>100,0</td>
</tr>
<tr>
<td>I. DELO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Ročno za druge (51 ur x 0,15 kW)</td>
<td>11,529</td>
<td>3,1</td>
</tr>
<tr>
<td>2. Strojno za druge (231 ur veliki, 20 ur mali traktor)</td>
<td>11,512</td>
<td>3,1</td>
</tr>
<tr>
<td>II. SNOVNI IZHODI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Rastlinska hrana (24,430 din)</td>
<td>4,733</td>
<td>1,3</td>
</tr>
<tr>
<td>2. Živina (319,750 din)</td>
<td>61,952</td>
<td>16,7</td>
</tr>
<tr>
<td>3. les (120 m³ x 440 kg x 5,23 kWh/kg)</td>
<td>276,144</td>
<td>74,4</td>
</tr>
<tr>
<td>4. Ostalo (67,700 din)</td>
<td>13,117</td>
<td>3,5</td>
</tr>
<tr>
<td>III. DAJATVE, PRISPEVKI</td>
<td>3,470</td>
<td>1,0</td>
</tr>
<tr>
<td>1. 1983: 8/12 od 15,477 din</td>
<td>3,470</td>
<td>1,0</td>
</tr>
<tr>
<td>2. 1984: 4/12 od 22,783 din</td>
<td>3,470</td>
<td>1,0</td>
</tr>
</tbody>
</table>
Pri snovnih izhodiščih smo iztrženi znesek delili z 48 (cena za 1 liter nafte) in rezultat množili z 9,3 (energijska vsebnost litra nafte v kWh). Le pri lesu smo energijsko vsebnost izračunali neposredno (440 kg za 1 m³ suhe smrekovine, 5,23 kWh/kg). Tu se je posebej pokazala podrejenost lesa (oz. neustreznost omenjene metode izračunavanja energijske vsebnosti), saj je pri ceni 3.500 din za m³ smrekovine tako izračunana vrednost (81.375 kWh) kar 3,4 manjša.

Oba primera poudarjata potrebo po raziskavah, ki bi točneje opredelila vlogo energije v oblikovanju (kmetijskih) proizvodov.

6 ENERGIJSKA BILANCA

6.1 ENERGIJSKA BILANCA GLAVNIH EKOSISTEMOV

Energijska bilanca vsakega ekosistema je v končni fazi enaka nič. Zato nas v tej zvezi zanimajo predvsem razmerja med posameznimi vrstami energijskih tokov, oziroma zvrstmi energije.

Ko razmišljamo o energijski bilanci celka, sta pomembna dva vidika:

- bilanca (razmerje med vhodi in izhodi) za posamezne glavne ekosisteme

- bilanca celotnega celka, ki je v mnogočem odvisna od bilanc posameznih ekosistemov; le-te so namreč vplivale na proizvodno usmeritev že v času fevdalne avtarkije, še bolj pa naj bi v prihodnje. Izdelava tega pregleda je mogoča na osnovi tabel št. 30, 38, 39, 40.

Ker naravne vhode lahko obravnavamo kot pradanost in ker so (kot že omenjeno) neprimerljivo večji od umetnih vhodov ali proizvodnje, nas bodo v tej zvezi predvsem zanimali tokovi in razmerja, ki se tičejo umetnih vhodov in proizvodnje – oboje je z gospodarskega vidika najbolj zanimivo – tudi zato, ker človek na te tokove lahko vpliva, na pradanosti pa ne.

Tabela 38 prikazuje osnovna razmerja vhodov za ves celek.

Globino sprememb v načinu dela na nekdanjem (fevdalno avtarkičnem) in današnjem celku poudarjajo že deleži posameznih vrst dela. Če sta nekdaj vse fizično delo opravila človek in žival, je danes ta delež praktično zanemarljiv (človeško delo 3%, živalsko 0,1%). Elektrika opravlja 3% dela, stroji na naftni pogon pa kar 94%. Zelo zanimiv je tudi vpogled v razmerja posa-
<table>
<thead>
<tr>
<th></th>
<th>Godz</th>
<th>Pačnik</th>
<th>Travnik</th>
<th>Njiva</th>
<th>Ostelo</th>
<th>Skupaj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWh</td>
<td>%</td>
<td>kWh</td>
<td>%</td>
<td>kWh</td>
<td>%</td>
</tr>
<tr>
<td>A. NARAVNI VHODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Sončna energija</td>
<td>261,971.000</td>
<td>56</td>
<td>55,344.000</td>
<td>12</td>
<td>105,188.000</td>
<td>23</td>
</tr>
<tr>
<td>B. UMETNI VHODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. DELO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Človeško</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- lastno</td>
<td>39</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>136</td>
<td>40</td>
</tr>
<tr>
<td>- drugo</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>2. živalsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- konjsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Strojno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- električni pogon</td>
<td>459</td>
<td>86</td>
<td>77</td>
<td>14</td>
<td>536</td>
<td>100</td>
</tr>
<tr>
<td>- naftni pogon</td>
<td>4.148</td>
<td>27</td>
<td>7.513</td>
<td>48</td>
<td>3.882</td>
<td>25</td>
</tr>
<tr>
<td>II. SNOVNI VHODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- gnojila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- seme</td>
<td>47</td>
<td>26</td>
<td>134</td>
<td>74</td>
<td>779</td>
<td>98</td>
</tr>
<tr>
<td>- zaščitna sredstva</td>
<td>116</td>
<td>27</td>
<td>310</td>
<td>73</td>
<td>426</td>
<td>100</td>
</tr>
<tr>
<td>- nakupi za vzdrževanje gospodinjstva in gospodarskega obratovanja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. AMORTIZACIJA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- strojev in naprav</td>
<td>13,085</td>
<td>20</td>
<td>31,695</td>
<td>48</td>
<td>18,054</td>
<td>28</td>
</tr>
<tr>
<td>- stav</td>
<td>13,085</td>
<td>20</td>
<td>31,695</td>
<td>48</td>
<td>18,054</td>
<td>28</td>
</tr>
<tr>
<td>- cest in vlak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. FINANČNI VHODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- krediti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- premije</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skupaj vemški vhod</td>
<td>17,285</td>
<td>9</td>
<td>59</td>
<td>0</td>
<td>40,082</td>
<td>21</td>
</tr>
<tr>
<td>VSE SKUPAJ</td>
<td>261,988,285</td>
<td>56</td>
<td>55,344,050</td>
<td>12</td>
<td>105,228,082</td>
<td>23</td>
</tr>
</tbody>
</table>

Umetni vhodi, ki jih ni mogoče porazdeliti po posameznih rabah znašajo 57% vseh metnih vhodov (111,725 kWh).
<table>
<thead>
<tr>
<th></th>
<th>Gosp</th>
<th>Pašnik</th>
<th>Travnik</th>
<th>Njiva</th>
<th>Ostalo</th>
<th>Skupaj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWh/ha</td>
<td>%</td>
<td>kWh/ha</td>
<td>%</td>
<td>kWh/ha</td>
<td>%</td>
</tr>
<tr>
<td>A. NARAVNI VHODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Sončna energija</td>
<td>9.450,954</td>
<td>13,276,399</td>
<td>12,643,548</td>
<td>12,378,805</td>
<td>12,297,670</td>
<td>10,656,018</td>
</tr>
<tr>
<td>B. UMETNI VHODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. DELO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Človeško</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- lastno</td>
<td>1,4</td>
<td>0,2</td>
<td>1,9</td>
<td>13,4</td>
<td>16,3</td>
<td>0,3</td>
</tr>
<tr>
<td>- drugo</td>
<td>0,5</td>
<td>0,1</td>
<td>1,0</td>
<td>7,0</td>
<td>3,5</td>
<td>0,1</td>
</tr>
<tr>
<td>2. Zivalsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- konjsko</td>
<td>11,1</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Strojno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- el. pogoš</td>
<td>55,2</td>
<td>1,1</td>
<td>65,5</td>
<td>0,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- naftni pogoš</td>
<td>149,6</td>
<td>24,0</td>
<td>903,1</td>
<td>18,8</td>
<td>3.301,9</td>
<td>16,7</td>
</tr>
<tr>
<td>II. SNOVNI VHODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- gnojila</td>
<td>11,3</td>
<td>79,6</td>
<td>30,0</td>
<td>0,6</td>
<td>926,3</td>
<td>4,6</td>
</tr>
<tr>
<td>- seme</td>
<td>11,3</td>
<td>79,6</td>
<td>16,1</td>
<td>0,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- zaščitna sredstva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>662,6</td>
<td>3,3</td>
</tr>
<tr>
<td>- nakupi za vzdružev, gospodinj. in gospodar. obrata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- strojev in naprav</td>
<td>472,1</td>
<td>75,7</td>
<td></td>
<td></td>
<td>3.809,7</td>
<td>79,1</td>
</tr>
<tr>
<td>- stavb</td>
<td>472,1</td>
<td>75,7</td>
<td></td>
<td></td>
<td>3.809,7</td>
<td>79,1</td>
</tr>
<tr>
<td>- cest in vlak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. FINANČNI VHODI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- krediti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- premije</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skupaj umet.vhodi</td>
<td>623,6</td>
<td>100,0</td>
<td>14,2</td>
<td>100,0</td>
<td>4.817,8</td>
<td>100,0</td>
</tr>
<tr>
<td>Indeks rab gleče na povprečje</td>
<td>14,0</td>
<td>0,3</td>
<td>108,0</td>
<td>443,5</td>
<td>26,9</td>
<td>100,0</td>
</tr>
<tr>
<td>VSE SKUPAJ</td>
<td>9.451,577,6</td>
<td>13,276,413,2</td>
<td>12,648,365,8</td>
<td>12,398,598,5</td>
<td>12,298,871,8</td>
<td>10,660,480,8</td>
</tr>
<tr>
<td>Ekosistem</td>
<td>Naravni vhodi kWh</td>
<td>Umetni vhodi kWh</td>
<td>Proizvodnja kWh</td>
<td>Proizvodnja Umetni vhodi</td>
<td>Proizvodnja Naravni vhodi %</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Gozd</td>
<td>9,450.954</td>
<td>624</td>
<td>42.400</td>
<td>68</td>
<td>0,448</td>
<td></td>
</tr>
<tr>
<td>Pašnik</td>
<td>13,276.399</td>
<td>14</td>
<td>43.400</td>
<td>3.100</td>
<td>0,326</td>
<td></td>
</tr>
<tr>
<td>Travnik</td>
<td>12,643.548</td>
<td>4.818</td>
<td>47.600</td>
<td>10</td>
<td>0,376</td>
<td></td>
</tr>
<tr>
<td>Njiva</td>
<td>12,378.805</td>
<td>19.794</td>
<td>120.400</td>
<td>6</td>
<td>0,972</td>
<td></td>
</tr>
<tr>
<td>Ostalo</td>
<td>12,297.640</td>
<td>1.202</td>
<td>20.300</td>
<td>17</td>
<td>0,160</td>
<td></td>
</tr>
<tr>
<td>Skupaj</td>
<td>466,415.000</td>
<td>191.220</td>
<td>1,936.475</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
meznih vrst dela v zvezi s posameznimi rabami. Vidimo, da sta njiva in travnik daleč najbolj delovno intenzivna (upoštevaje površine).

Podobno situacijo kažejo snovni vhodi, če je bil nekaj celek za snovne vhode praktično zaprt pa danes ta kategorija predstavlja kar 32% vseh umetnih vhodov. Največji je pri tem, razumljivo, delež njive, absolutno največji pa je delež kategorije "nakupi za vzdrževanje gospodinjstva in gospodarskega obrata" - hrana, obleka, obutev, repromaterial, ki je ni mogoče točno opredeliti glede na stroškovno mesto - nekdanje samooskrbnosti je očitno konec tudi na tem področju.

V primerjavi z nekaj je nova tudi kategorija "amortizacija". Ob konservativno računanih amortizacijskih zneskih vseeno predstavlja absolutno največjo kategorijo (53%). Nakupi strojev so nujnost - tudi zaradi pomanjkanja delovne sile, ceste so osnovni pogoj za intenzivno gospodarjenje in obstanek na celku sploh in tudi stavbe so grajene drugače in zahtevneje kot včasih. Kako pomemben gospodarski rezultat utegnejo biti krediti in premije, priča tudi podatek, da znašajo kar 6% vseh umetnih vhodov.

Umetni vhodi, ki jih ni bilo mogoče opredeliti glede na stroškovno mesta glavnih proizvodnih sistemov (gozd, pašnik, travnik, njiva) znašajo 57% vseh umetnih vhodov.

Nekatere od teh ugotovitev glede na posamezne ekosisteme še jasneje ilustrira tabela 39.

Energijsko bilanco posameznih ekosistemov ilustrira tabela 40, v kateri smo skušali z razmerjem med proizvodnjo ekosistema in energijskimi vhodi vanj prikazati vsaj en vidik energijske "rentabilnosti" gozda, pašnika, travnika in njive. Nemogoče je namreč primerjati kilogram lesa s kilogramom rženega zrnja. V tej primerjavi s količnikimi daleč izstopa pašnik - vendar gre za leto,
ko so bila vlaganja vanj izjemno majhna (14 kWh/ha), tako da ta primerjava ni realna. Okvirna vrednost tega količnika za pašnik naj bi bilo okrog 30, kar še vedno opozarja na relativno eksten-
živnost te kategorije. Razmerja ostalih rab so dovolj zgovorna – zgolj s količinskega vidika gledano je najrentabilnejša pro-
izvodnja gozda, ki presega proizvodnjo njive kar enajstkrat.

Relativne prednosti posameznih rab glede na energijsko učinkovi-
tost prikazuje tudi tabela št. 41, ki posebej poudarja pomen
gozda za gospodarski obrat celka.
TABELA 41: Energijska učinkovitost glavnih rab tal in njihov delež v rastlinski proizvodnji celka

<table>
<thead>
<tr>
<th></th>
<th>Skupni direktni umetni vhodi</th>
<th>Skupna proizvodnja</th>
<th>Proizv.-vhodi =netto proizv.</th>
<th>Izkoristek narav.vhodov</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWh</td>
<td>%</td>
<td>kWh</td>
<td>%</td>
</tr>
<tr>
<td>Gozd</td>
<td>17.285 21</td>
<td>1.175.286 62</td>
<td>1.158.001 64</td>
<td>0.448</td>
</tr>
<tr>
<td>Pašnik</td>
<td>59 0</td>
<td>257.154 14</td>
<td>257.095 14</td>
<td>0.326</td>
</tr>
<tr>
<td>Travnik</td>
<td>40.082 50</td>
<td>310.958 16</td>
<td>270.876 15</td>
<td>0.376</td>
</tr>
<tr>
<td>Njiva</td>
<td>23.271 29</td>
<td>145.226 8</td>
<td>121.955 7</td>
<td>0.972</td>
</tr>
<tr>
<td>Skupaj</td>
<td>80.697 100</td>
<td>1.888.624 100</td>
<td>1.807.927 100</td>
<td>-</td>
</tr>
</tbody>
</table>
Študij energijske bilance celka kot sistema odpira povsem nove poglede nanj.

Podatek, da celokupni naravni energijski vhod letnega sončnega sevanja na celiku predstavljajo dvanajstino proizvodnje električne energije v Sloveniji leta 1973, je osupljujoč. Prav zato doumemo razsežnosti naravne proizvodnje, ki je bistveno delovanje celika, če razumemo, da se v kemično energijo pretvori le 0,415 odstotka te energije in da se dobra polovica te energije takoj vrača v vzdrževanje (antropogenih) ekosistemov.

Celik se snovno in energijsko vse bolj odpira. O njegovi bodoči usmeritvi bo odločalo predvsem razmerje med umetnimi vhodi in izhodi, na katere človek lahko vpliva. Da tu manevrski prostor zožujejo neugodne naravne danosti, je jasno - študij energijske bilance celika pa opozarja, da je na to razmerje mogoče vplivati ne le z zvečevanjem izhodov, ampak tudi z zmanjševanjem vhodov - s smotnim usmerjanjem v energijsko najrentabilnejše rabe tal.
TABELA 42: Skupna energijska bilanca celka
(v primerjavi z naravnimi vhodi)

<table>
<thead>
<tr>
<th></th>
<th>kWh</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naravni vhodi</td>
<td>466.415.000</td>
<td>100</td>
</tr>
<tr>
<td>Umetni vhodi</td>
<td>195.272</td>
<td>0,042</td>
</tr>
<tr>
<td>Proizvodnja</td>
<td>1,936.475</td>
<td>0,415</td>
</tr>
<tr>
<td>Umetni izhodi</td>
<td>370.945</td>
<td>0,080</td>
</tr>
</tbody>
</table>
Kljub časovno, finančno in kadrovsko okvirom je v nalogi vendarle uspelo zastaviti nekaj še nevprašanih vprašanj – in nanje vsaj delno tudi odgovoriti. Več kot pilotna študija naloga niti ni mogla biti, upamo pa, da so že njeni rezultati dovolj zanimivi, da bodo izziv za interdisciplinarno nadaljevanje podobnega dela. Energijska perspektiva odpira povsem nove poglede na tako staro stvar, kot je celek, o katerem smo menili, da vsaj najpomembnejše že vemo.

Vprašanje energijske vsebnosti (ali cene) posameznih proizvodov podobno podira nekatere dosedanje predstave, čeprav še zdaj ni rešeno. Na to je naloga jasno opozorila.

Iz omenjenih vzrokov se v nalogi nismo uspeli lotiti proučevanja notranjih tokov, kar bo vse laže v prihodnje, če bomo uspeli razčistiti nekatera vprašanja okrog tokov, ki prestopajo meje celka kot sistema, nihovih stroškovnih mest ipd. Šele poznavanje strukture pretakanja energije v samem gospodarskem obratu celka bo skladno s teorijo kibernetike osvetlilo ključna vprašanja njegove razvitosti, prilagojenosti naravnim in družbenim razmeram, kot tudi tokovom, ki prestopajo mejo sistema.

Proučevanje energijske bilance celka opozarja na nepričakovano velike strukturne in funkcionalne razlike med klasičnim (fevdalnim) in sodobnim celkom, zlasti:
- na spremembe v ekološki fiziognomiji (nagib, osončenje) posameznih rab tal,
- na dejstvo, da človeško delo predstavlja le še 3% vsega dela, živalsko 0,1%, delo naftnih strojev pa 94%,
- na dejstvo, da se celek odpira tudi v snovnem pogledu.

Za bodoče usmeritve gospodarjenja na celkih nasplohol, energijska
analiza opozarja na naravne dimenzije rastlinske proizvodnje, na relativne prednosti posameznih vrst rastlinske proizvodnje, predvsem pa na potrebo po "energijskem premišljevanju" v našem vsakodnevem življenju - ne le na celku.
8 \text{PRILOGE}
1. SPLOŠNI PODATKI O KMETIJI

(stanje dne ________________)

Kraj __ K.O. __

Lastnik __ Domače ime ______________________________________

šteto družinskih članov

gospodar ______________________________________
gospodinje _____________________________________
otroci do 14 let __________________________________
otroci nad 14 let __________________________________

drugi do 65 let __________________________________

drugi nad 65 let __________________________________

skupaj ___

Lega kmetije: Najvišja točka (m.n.m) _______________

ENERGETSKI VHODI

LETNA INVENTURA IN NAKUPI

<table>
<thead>
<tr>
<th>zač.st. vsi nakupi končno etanje poraba</th>
</tr>
</thead>
</table>

1. **GORIVA** nafta (lit)
 - bencin "
 - olje "

 vrsta
 - mešanica (4%)
 - drva (prost.m)
 - premog (ton)

2. **ELEKTRIKA** (KWh)

3. **HLEV**
 - stelja
 - žagovina (pm)
 - umetna krmila

 vrsta

4. **UMETNA GNOJILA**

 vrsta

5. **ZAŠČITNA SREDSTVA**

 vrsta
zač. st. vsi nakupi končno stanje poraba

<table>
<thead>
<tr>
<th>6. KAŠČA</th>
<th>žito (v kg)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rž</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ječmen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>oves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ajda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>koruza</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ostalo (v kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vrsta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. SHRAMBA</th>
<th>moka (kg)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vrsta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sladkor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>olje</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>šlaniňa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>meso</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tekst</td>
<td>stanje</td>
<td>n a k u p i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dne</td>
<td>dat.</td>
<td>kol.</td>
<td>dat.</td>
<td>kol.</td>
</tr>
</tbody>
</table>

- 114 -
Živinorejska proizvodnja
A) Delo v hlevu (vsakodnevno)

DNINE (v urah) potrebne vsak dan za:

<table>
<thead>
<tr>
<th></th>
<th>ur/dan</th>
<th>%</th>
<th>opombe</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRMLJENJE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIŠČENJE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLŽO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VZDRŽEVANJE HLEVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VODENJE ŽIVINE NA PAŠO IN VRAČANJE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSTALO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V tej evidenci, ki je del celotnega popisa lastnik sam beleži oziroma vodi:

1. Dnevnik opravil, vlaganj in izhodov (najmanj enkrat tedensko za vsak dan)
2. Dnevnik mlečne proizvodnje (tedensko za vsak dan)
3. Poraba električne energije (letno)
4. Dnevnik nakupov (po potrebi)
5. Dnevnik proda (po potrebi)
6. Način prehrane živine
7. Poraba semena
8. Priprava in popravila strojev
9. Ostali pomembni dogodki

Zbrani podatki ne bodo pomembni le za nadaljevanje proučevanja, ampak bodo zlasti ob daljšem vodovalju zelo zanimivi tudi za lastnika samega in mu bodo v pomoč pri gospodarjenju. Da bi bili zbrane podatki čim bolj enotni in jasni, naj za ispolnjevanje veljajo naslednja navodila:

1. Dnevnik opravil, vlaganj in izhodov
 Da bodo podatki točni, je treba ta dnevnik voditi za vsak dan. Posamezne rubrike se vodijo takole:
 1 Datum
 Verjetno le redko delate eno stvar na enem mestu ves dan. Zato se isti datum lahko vpiše večkrat - za vsako večje delo, ki ste ga ta dan opravljali in za vsako parcelo, na kateri ste delali.
 2 Šifra parcel
 Vpišite šifro njive, travnika, gozda, itd., kjer ste delali (parcelno številko - šifro parcele najdete na priloženi karti)
 3 Ostalo
 Če delo ali opravek nista bila vezana na rastlinsko proizvodnjo...
zvodnjo, vpišite kraj dela: na primer: čebelnjak, hlev
svinjak, delavnica, občina, zadruga, TOK, itd. V to
rubriko vpišite tudi čnine, ki jih vračate sosedom in to
naznačite v opombi.

4 Vrsta dela
Opišite delo po naslednjih skupinah:
gozd: sečnja
spravilo
spravilo z vitlom
privlaka
sadovnjak: obrezovanje, škropljenje, obiranje, prešanje,
kuhanje žganja, sušenje sadja
pašnik: čiščenje
ograjevanje
(gnojenje)
travnik: čiščenje
gnojenje
košnja
sušenje - strojno
- ročno
spravilo
njiva: gnojenje
oranje
brananje
setev
sadnja
škropljenje
okopavanje
spravilo pridelka
vrt: (vska dela na vrtu)
usluge: (delo za druge)
ostalo: (n.pr. oranje snega, popravilo cest in poti
itd.)
5 Število delovnih ur
Vpišite skupno število ur, opravljenih pri določenem delu. Če so n.pr. delali 3 domači ljudje in dva najeta 8 ur, vpišite pod rubriko "lastnik " 3 x 8 = 24 in pod rubriko "najetih " 2 x 8 = 16, število zaobkrožite na celo uro. Opravil, ki so trajala manj kot eno uro ne vpisujte.

6a Vrsta stroja
Vpišite vrsto stroja in njegovo moč v KW n.pr. traktor, puhalnik, kosilnica, avto (če ste šli po opravkih v km, elektromotor, itd)

6 Število strojnih ur
Vpišite ocenjeno število ur, ko je stroj dejansko obra- toval. Število zaobkrožite na pol ure. Opravil, ko je stroj delal manj kot pol ure, ne vpisujte. Če je bil stroj najet, število ur samo obkrožite.

7 Število živalskih ur
Označite vrsto živine, s katero ste delali. Ure vpisujte enako, kot za ročne dnine.

8 Potrošeno
Vpišite vrsto materiala, ki ste ga porabili pri delu. n.pr. vrženo seme, gnoj, gnojevka, gnojnica, umetno gnojilo(vrsto) nerasredčeno zaščitno sredstvo (vrsto) itd. in količino v kg.

9 Pridelano
Vpišite vrsto pridelka n.pr. seno, rž, krompir, silažna koruza, les, pesa, korenje, ajda, bela repa, oves, oljna repica, itd. Vse v kg (v izjemnih primerih n.pr. les uporabite ustrezno enoto)

10 Opombe
Vpišite vse posebnosti, ki jih v predhodnih rubrikah ni bilo mogoče prikazati in so vplivale na pridelek oz. vlaganja na določeni parceli.
2. **DNEVNIK MLEČNE PROIZVODNJE**
 Ta dnevnik se vodi za vsak dan, izpolnjevanje obrazca je preprosto. Pod opombe vpišite odstotek maščobe (v začetku meseca) in eventualne spremembe med mesecem (samo če mleko oddajata).

3. **PORABA ELEKTRIČNE ENERGIJE**
 Vpisujte stanje na števcih na začetku in koncu opazovalnega obdobja. Izpolnjujte le rubrike št. 2 in 4.

4. **DNEVNIK NAKUPOV**
 V ta obrazec vpisujte nakupe vsega blaga potrebnega za gospodarstvo (goriva, stroj, seme, umetna gnojila, zaščitna sredstva itd.) in gospodinjstvo (le moko - pri njej označite tudi vrsto, sladkor, olje, mast, meso). Za vsako vrsto blaga izpolnite posebno vrsto. Če ste določeno blago dobili z menjavo, to vpišite pod opombe, npr. (če ste zamenjali 500 kg krompirja za 300 kg koruze, vpišite 300 kg koruze kot nakup, v opombi pa napišite "za 500 kg krompirja").

5. **DNEVNIK PRODAJE**
 Ta dnevnik, vodite enako kot dnevnik nakupov. Vanj vpisujte vse blago pridelano, na kmetiji, ki ste ga prodali ali dali za menjavo, razen mleka, za katerega vodite posebno evidenco.

6. **NAČIN PREHRANE ZIVINE**
 V ta obrazec vpisujte spremembe v načinu krmljenja skozi vse leto (npr. prehod na pašo, začetek pokladanja silaže itn.).

7. **PORABA SEMENA**
 Vpišite količino, vrsto in izvor (domače, kupljeno), ki ste ga posejali na določeni parceli.

8. **PRIPRAVA IN POPRAVILO STROJEV IN ORODA**
 Vpišite lastna in tuja popravila z navedbo porabljenih ur in ceno vgrajenih rezervnih delov.

9. **OSTALI POMEMBNI DOGODKI**
 V ta obrazec prosto vpisujte vse ostale dogodke, pomembne za gospodarjenje z navedbo datuma in količin (npr. toča, pozeba, ocena letine z ozirom na poprečje, suša, neurje).
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>datum</td>
<td>šifra</td>
<td>ostalo</td>
<td>vrsta dela</td>
<td>št. delovnih ur</td>
<td>št. strojnih ur</td>
<td>št. živalskih ur</td>
<td>potrošeno</td>
<td>pridelano</td>
<td>opombe</td>
</tr>
<tr>
<td>lastnih</td>
<td>najetih</td>
<td>vrsta stroja</td>
<td>moč</td>
<td>ure</td>
<td>vrsta živali</td>
<td>ure</td>
<td>vrsta mat. kg</td>
<td>vrsta prid. kg</td>
<td></td>
</tr>
</tbody>
</table>

- 120 -
2. DNEVNIK MLEČNE PROIZVODNJE

<table>
<thead>
<tr>
<th>datum</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MLEKO (v litrih)</td>
<td>maslo</td>
<td>sir</td>
<td>skuta</td>
<td>opombe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nemolišeno</td>
<td>uporaba za</td>
<td>prodajo</td>
<td>gospodinjstvo</td>
<td>krmno</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>skupaj</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. PORABA ELEKTRIČNE ENERGIJE

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mesec</td>
<td>dnevni tok</td>
<td>noćni tok</td>
<td>skupaj</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KWh</td>
<td>%</td>
<td>KWh</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>1. jan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. feb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. mar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. apr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. maj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. jun.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. jul.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. avg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. sep.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. okt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. dec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>skupaj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dnevnik nakupov

Mesec: 19

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>zap.št.</td>
<td>datum</td>
<td>vrsta blaga</td>
<td>količina</td>
<td>opomba</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>zap. št.</td>
<td>datum</td>
<td>vrsta blaga</td>
<td>količina</td>
<td>opombe</td>
</tr>
<tr>
<td>zap. šifra parc.</td>
<td>datum</td>
<td>vrsta semena</td>
<td>količina kg</td>
<td>izvor semena</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>datum</td>
<td>stroj ce, orodje</td>
<td>vrsta dela</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. **OSTALI POMEMBNI DOGODKI**
PRILOGA 1: Gozd - naravni vhodi energije

<table>
<thead>
<tr>
<th>zap. št. parc.</th>
<th>Površina m²</th>
<th>Potencialno letno osončenje parcel 10³ kJ</th>
<th>Teoretično osončenje parcel 10³ kJ</th>
<th>Teoretično osončenje parcel 10³ kWh</th>
<th>Teoretično osončenje kWh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 29</td>
<td>1.719</td>
<td>18,956.217</td>
<td>7,582.486</td>
<td>2.106</td>
<td>1.225</td>
</tr>
<tr>
<td>2. 31</td>
<td>35.702</td>
<td>319,451.740</td>
<td>127,780.690</td>
<td>35.494</td>
<td>994</td>
</tr>
<tr>
<td>3. 32</td>
<td>97.521</td>
<td>862,511.489</td>
<td>345,004.590</td>
<td>95.835</td>
<td>983</td>
</tr>
<tr>
<td>4. 33</td>
<td>142.248</td>
<td>1,156,825.173</td>
<td>462,730.040</td>
<td>128.536</td>
<td>904</td>
</tr>
<tr>
<td>Skupaj</td>
<td>277.190</td>
<td>2,357,744.619</td>
<td>943,097.806</td>
<td>261.971</td>
<td></td>
</tr>
</tbody>
</table>
PRILOGA 2: Pašnik - naravni vhodi energije

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>št. parc.</th>
<th>Površina m²</th>
<th>Potencialno letno osončenje parcelle 10³ kJ</th>
<th>Teoretično osončenje 10³ kJ</th>
<th>Teoretično osončenje parcelle 10³ kWh</th>
<th>Teoretično osončenje kWh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>22</td>
<td>5.620</td>
<td>66,512.020</td>
<td>26,604.808</td>
<td>7.390</td>
<td>1.315</td>
</tr>
<tr>
<td>2.</td>
<td>23</td>
<td>6.413</td>
<td>78,366.389</td>
<td>31,346.555</td>
<td>8.707</td>
<td>1.358</td>
</tr>
<tr>
<td>3.</td>
<td>26</td>
<td>25.355</td>
<td>302,251.430</td>
<td>120,900.570</td>
<td>33.583</td>
<td>1.325</td>
</tr>
<tr>
<td>4.</td>
<td>27</td>
<td>4.298</td>
<td>50,977.073</td>
<td>20,390.829</td>
<td>5.664</td>
<td>1.318</td>
</tr>
<tr>
<td>Skupaj</td>
<td></td>
<td>41.686</td>
<td>498,106.912</td>
<td>199,242.762</td>
<td>55.344</td>
<td></td>
</tr>
<tr>
<td>Zap. št.</td>
<td>Površina parcelle m²</td>
<td>Potencialno osončenje parcelle 10³ kJ</td>
<td>Teoretično osončenje parcelle 10³ kJ</td>
<td>Teoretično osončenje parcelle kwh</td>
<td>Teoretično osončenje kwh/m²</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>48,084.777</td>
<td>19,233.910</td>
<td>5.343</td>
<td>1.201</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>55,566.938</td>
<td>22,226.775</td>
<td>6.174</td>
<td>1.334</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>48,264.944</td>
<td>19,305.977</td>
<td>5.363</td>
<td>1.288</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>49,682.822</td>
<td>19,873.128</td>
<td>5.520</td>
<td>1.315</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>96,449.701</td>
<td>38,579.880</td>
<td>10.716</td>
<td>1.334</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>53,830.970</td>
<td>21,532.388</td>
<td>5.981</td>
<td>1.392</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>11,118.190</td>
<td>4,447.276</td>
<td>1.235</td>
<td>1.334</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>52,510.321</td>
<td>21,004.128</td>
<td>5.834</td>
<td>1.403</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>37,826.551</td>
<td>15,130.620</td>
<td>4.203</td>
<td>1.379</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>59,136.581</td>
<td>23,654.632</td>
<td>6.571</td>
<td>1.371</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>38,345.008</td>
<td>15,338.003</td>
<td>4.261</td>
<td>1.315</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>96,539.126</td>
<td>38,615.649</td>
<td>10.727</td>
<td>1.303</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>13,226.417</td>
<td>5,290.566</td>
<td>1.469</td>
<td>1.083</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>37,363.138</td>
<td>14,945.255</td>
<td>4.151</td>
<td>1.342</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>50,962.678</td>
<td>20,385.071</td>
<td>5.662</td>
<td>1.189</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>116,194.840</td>
<td>46,477.936</td>
<td>12.910</td>
<td>1.315</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>40</td>
<td>81,612.760</td>
<td>32,645.104</td>
<td>9.068</td>
<td>907</td>
<td></td>
</tr>
</tbody>
</table>

Skupaj: 83.195 946.715.762 378.686.298 105.188
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Površina</th>
<th>Potencialno letno osončenje parcele 10^3 kJ</th>
<th>Teoretično osončenje parcele 10^3 kJ</th>
<th>Teoretično osončenje parcele 10^3 kWh</th>
<th>Teoretično osončenje kWh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>št. parc.</td>
<td>m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>14</td>
<td>3.041</td>
<td>34,939.368</td>
<td>13,975.747</td>
<td>3.882</td>
</tr>
<tr>
<td>2.</td>
<td>15</td>
<td>2.394</td>
<td>27,742.203</td>
<td>11,096.881</td>
<td>3.082</td>
</tr>
<tr>
<td>3.</td>
<td>16</td>
<td>926</td>
<td>10,730.694</td>
<td>4,292.277</td>
<td>1.192</td>
</tr>
<tr>
<td>4.</td>
<td>17</td>
<td>3.438</td>
<td>41,047.608</td>
<td>16,419.043</td>
<td>4.561</td>
</tr>
<tr>
<td>5.</td>
<td>28</td>
<td>529</td>
<td>5,144.207</td>
<td>2,057.683</td>
<td>572</td>
</tr>
<tr>
<td>6.</td>
<td>38</td>
<td>1.350</td>
<td>10,756.962</td>
<td>4,302.785</td>
<td>1.195</td>
</tr>
<tr>
<td>7.</td>
<td>39</td>
<td>80</td>
<td>637.450</td>
<td>254.980</td>
<td>71</td>
</tr>
<tr>
<td>Skupaj</td>
<td></td>
<td>11.758</td>
<td>130,998.492</td>
<td>52,399.396</td>
<td>14.555</td>
</tr>
</tbody>
</table>
PRILOGA 3: Travnik - naravni vhodi energije

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Površina</th>
<th>Potencialno osončenje parcelce 10^3 kJ</th>
<th>Teoretično osončenje parcelce 10^3 kWh</th>
<th>Teoretično osončenje parcelce kWh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>48,084.777</td>
<td>19,233.910</td>
<td>5.343</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>55,566.938</td>
<td>22,226.775</td>
<td>6.174</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>48,264.944</td>
<td>19,305.977</td>
<td>5.363</td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>49,682.822</td>
<td>19,873.128</td>
<td>5.520</td>
</tr>
<tr>
<td>5.</td>
<td>6</td>
<td>96,449.701</td>
<td>38,579.880</td>
<td>10.716</td>
</tr>
<tr>
<td>6.</td>
<td>7</td>
<td>53,830.970</td>
<td>21,532.388</td>
<td>5.981</td>
</tr>
<tr>
<td>7.</td>
<td>8</td>
<td>11,118.190</td>
<td>4,447.276</td>
<td>1.235</td>
</tr>
<tr>
<td>8.</td>
<td>9</td>
<td>52,510.321</td>
<td>21,004.128</td>
<td>5.834</td>
</tr>
<tr>
<td>9.</td>
<td>10</td>
<td>37,826.551</td>
<td>15,130.620</td>
<td>4.203</td>
</tr>
<tr>
<td>10.</td>
<td>11</td>
<td>59,136.581</td>
<td>23,654.632</td>
<td>6.571</td>
</tr>
<tr>
<td>11.</td>
<td>12</td>
<td>38,345.008</td>
<td>15,338.003</td>
<td>4.261</td>
</tr>
<tr>
<td>12.</td>
<td>13</td>
<td>96,539.126</td>
<td>38,615.649</td>
<td>10.727</td>
</tr>
<tr>
<td>13.</td>
<td>18</td>
<td>13,226.417</td>
<td>5,290.566</td>
<td>1.469</td>
</tr>
<tr>
<td>14.</td>
<td>20</td>
<td>37,363.138</td>
<td>14,945.255</td>
<td>4.151</td>
</tr>
<tr>
<td>15.</td>
<td>21</td>
<td>50,962.678</td>
<td>20,385.071</td>
<td>5.662</td>
</tr>
<tr>
<td>16.</td>
<td>30</td>
<td>116,194.840</td>
<td>46,477.936</td>
<td>12.910</td>
</tr>
<tr>
<td>17.</td>
<td>40</td>
<td>81,612.760</td>
<td>32,645.104</td>
<td>9.068</td>
</tr>
</tbody>
</table>

Skupaj 83.195 946,715.762 378,686.298 105.188
PRILOGA 4: Njiva - naravni vhodi energije

<table>
<thead>
<tr>
<th>Zap. Št. parc.</th>
<th>Površina m²</th>
<th>Potencijalno letno osončenje parcelle 10³ kJ</th>
<th>Teoretično osončenje parcelle 10³ kJ</th>
<th>Teoretično osončenje parcelle 10³ kWh</th>
<th>Teoretično osončenje kWh/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>14</td>
<td>3.041</td>
<td>34,939.368</td>
<td>13,975.747</td>
<td>3.882</td>
</tr>
<tr>
<td>2.</td>
<td>15</td>
<td>2.394</td>
<td>27,742.203</td>
<td>11,096.881</td>
<td>3.082</td>
</tr>
<tr>
<td>3.</td>
<td>16</td>
<td>926</td>
<td>10,730.694</td>
<td>4,292.277</td>
<td>1.192</td>
</tr>
<tr>
<td>4.</td>
<td>17</td>
<td>3.438</td>
<td>41,047.608</td>
<td>16,419.043</td>
<td>4.561</td>
</tr>
<tr>
<td>5.</td>
<td>28</td>
<td>529</td>
<td>5,144.207</td>
<td>2,057.683</td>
<td>572</td>
</tr>
<tr>
<td>6.</td>
<td>38</td>
<td>1.350</td>
<td>10,756.962</td>
<td>4,302.785</td>
<td>1.195</td>
</tr>
<tr>
<td>7.</td>
<td>39</td>
<td>80</td>
<td>637.450</td>
<td>254.980</td>
<td>71</td>
</tr>
</tbody>
</table>

<p>| Skupaj | 11.758 | 130,998.492 | 52,399.396 | 14.555 | |</p>
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Št. parc.</th>
<th>Površina m²</th>
<th>Potencialno letno osončenje parcelle 10³ kJ</th>
<th>Teoretično osončenje parcelle 10³ kJ</th>
<th>Teoretično osončenje parcelle 10³ kWh</th>
<th>Teoretično osončenje kWh/m²</th>
<th>Opombe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>19</td>
<td>1.322</td>
<td>12.855.654</td>
<td>5.142.261</td>
<td>1.428</td>
<td>1.080</td>
<td>sadovnjak</td>
</tr>
<tr>
<td>2.</td>
<td>25</td>
<td>4.033</td>
<td>45.407.257</td>
<td>18.162.902</td>
<td>5.045</td>
<td>1.250</td>
<td>sadovnjak</td>
</tr>
<tr>
<td>3.</td>
<td>34</td>
<td>331</td>
<td>3.166.356</td>
<td>1.266.542</td>
<td>352</td>
<td>1.063</td>
<td>grmišče</td>
</tr>
<tr>
<td>4.</td>
<td>35</td>
<td>2.182</td>
<td>26.198.587</td>
<td>10.479.434</td>
<td>2.911</td>
<td>1.334</td>
<td>sadovnjak</td>
</tr>
<tr>
<td>5.</td>
<td>36</td>
<td>1.488</td>
<td>17.873.856</td>
<td>7.149.542</td>
<td>1.986</td>
<td>1.335</td>
<td>dvorišče</td>
</tr>
<tr>
<td>6.</td>
<td>37</td>
<td>300</td>
<td>3.503.456</td>
<td>1.401.382</td>
<td>389</td>
<td>1.298</td>
<td>vrt</td>
</tr>
<tr>
<td>7.</td>
<td>41</td>
<td>14.083</td>
<td>153.571.240</td>
<td>61.428.496</td>
<td>17.063</td>
<td>1.212</td>
<td>ceste</td>
</tr>
<tr>
<td>8.</td>
<td>24</td>
<td>133</td>
<td>1.650.530</td>
<td>660.212</td>
<td>183</td>
<td>1.376</td>
<td>grmišče</td>
</tr>
<tr>
<td>Skupaj</td>
<td>23.872</td>
<td>264.226.936</td>
<td>105.690.771</td>
<td>29.357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Žup. št.</td>
<td>Površina</td>
<td>Vrsta stroja (motorja)</td>
<td>Skupaj strojnih Opon</td>
<td>Opombe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>m²</td>
<td>Traktor</td>
<td>Traktor</td>
<td>Kosilnica</td>
<td>Obračalnik</td>
<td>Skupaj</td>
<td>Silorenica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47,8 kW</td>
<td>23,5 kW</td>
<td>9,0 kW</td>
<td>kwh (nafta)</td>
<td>5,5 kW</td>
<td>kwh</td>
</tr>
<tr>
<td>1.</td>
<td>4.449</td>
<td>26,5</td>
<td>4</td>
<td>11</td>
<td>9</td>
<td>1.504</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>4.628</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>2,5</td>
<td>2,5</td>
<td>227</td>
</tr>
<tr>
<td>3.</td>
<td>4.165</td>
<td>3,5</td>
<td>-</td>
<td>-</td>
<td>9,5</td>
<td>4,5</td>
<td>260</td>
</tr>
<tr>
<td>4.</td>
<td>4.198</td>
<td>9</td>
<td>18</td>
<td>8</td>
<td>14,5</td>
<td>1.028</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>8.033</td>
<td>10,5</td>
<td>1</td>
<td>8</td>
<td>11</td>
<td>645</td>
<td>9</td>
</tr>
<tr>
<td>6.</td>
<td>4.298</td>
<td>9</td>
<td>-</td>
<td>9</td>
<td>5</td>
<td>525</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>926</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>240</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>4.157</td>
<td>1</td>
<td>-</td>
<td>5,5</td>
<td>3</td>
<td>105</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>3.048</td>
<td>8</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>423</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>4.793</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>4</td>
<td>243</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>3.240</td>
<td>7</td>
<td>-</td>
<td>7</td>
<td>13</td>
<td>491</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>8.232</td>
<td>6</td>
<td>-</td>
<td>7,5</td>
<td>8</td>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td>1.356</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14.</td>
<td>3.094</td>
<td>3</td>
<td>-</td>
<td>5</td>
<td>4</td>
<td>206</td>
<td>6</td>
</tr>
<tr>
<td>15.</td>
<td>4.760</td>
<td>8,5</td>
<td>-</td>
<td>4</td>
<td>8</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>16.</td>
<td>9.818</td>
<td>6</td>
<td>-</td>
<td>7</td>
<td>8</td>
<td>398</td>
<td>-</td>
</tr>
<tr>
<td>17.</td>
<td>10.000</td>
<td>4</td>
<td>-</td>
<td>6</td>
<td>10</td>
<td>314</td>
<td>-</td>
</tr>
</tbody>
</table>

Skupaj: 83.195 | 114 | 22 | 98 | 111,5 | 7.509 | 35,5 | 41 | 25 | 456 | 7.965
<table>
<thead>
<tr>
<th>Št.</th>
<th>Površina</th>
<th>Traktor 47,8 kW</th>
<th>Traktor 23,5 kW</th>
<th>Obračalnik 9,0 kW</th>
<th>Skupaj kwh (nafta)</th>
<th>Silorez 5,5 kW</th>
<th>Preveževnik 3,0 kW</th>
<th>Puhalnik 5,5 kW (el.)</th>
<th>Skupaj strojnih upombe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>4,449</td>
<td>26,5</td>
<td>4</td>
<td>11</td>
<td>9</td>
<td>1,504</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>4,628</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td>9</td>
<td>2,5</td>
<td>2,5</td>
<td>227</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>4,165</td>
<td>3,5</td>
<td>9,5</td>
<td>4,5</td>
<td>260</td>
<td>1,5</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>4,198</td>
<td>9</td>
<td>18</td>
<td>8</td>
<td>14,5</td>
<td>1,028</td>
<td>8</td>
<td>12,0</td>
</tr>
<tr>
<td>5.</td>
<td>6</td>
<td>8,033</td>
<td>10,5</td>
<td>1</td>
<td>8</td>
<td>11</td>
<td>645</td>
<td>9</td>
<td>25,0</td>
</tr>
<tr>
<td>6.</td>
<td>7</td>
<td>4,298</td>
<td>9</td>
<td>-</td>
<td>9</td>
<td>5</td>
<td>525</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>8</td>
<td>926</td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>240</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>9</td>
<td>4,157</td>
<td>1</td>
<td>-</td>
<td>5,5</td>
<td>3</td>
<td>105</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>10</td>
<td>3,048</td>
<td>8</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>423</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>11</td>
<td>4,793</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>4</td>
<td>243</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>12</td>
<td>3,240</td>
<td>7</td>
<td>-</td>
<td>7</td>
<td>13</td>
<td>491</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>12.</td>
<td>13</td>
<td>8,232</td>
<td>6</td>
<td>-</td>
<td>7,5</td>
<td>8</td>
<td>400</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>13.</td>
<td>18</td>
<td>1,356</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14.</td>
<td>20</td>
<td>3,094</td>
<td>3</td>
<td>-</td>
<td>5</td>
<td>4</td>
<td>206</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>15.</td>
<td>21</td>
<td>4,760</td>
<td>8,5</td>
<td>-</td>
<td>4</td>
<td>8</td>
<td>500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16.</td>
<td>30</td>
<td>9,818</td>
<td>6</td>
<td>-</td>
<td>7</td>
<td>8</td>
<td>398</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>17.</td>
<td>40</td>
<td>10,000</td>
<td>4</td>
<td>-</td>
<td>6</td>
<td>10</td>
<td>314</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Skupaj</td>
<td>83,195</td>
<td>114</td>
<td>22</td>
<td>98</td>
<td>111,5</td>
<td>7,509</td>
<td>35,5</td>
<td>41</td>
</tr>
</tbody>
</table>
PRILOGA 8: Njiva - vlaganje energije v obliki strojnega dela

<table>
<thead>
<tr>
<th>Zap. št. parc.</th>
<th>Površina m²</th>
<th>Vrsta stroja (motorja)</th>
<th>Traktor</th>
<th>Traktor</th>
<th>Skupaj kWh (nafta)</th>
<th>Siloreznica kWh</th>
<th>Skupaj kWh (elekt.)</th>
<th>Skupaj strojnih kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nafta, bencin</td>
<td>47,8 kW</td>
<td>23,5 kW</td>
<td></td>
<td>5,5 kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ur</td>
<td>ur</td>
<td>ur</td>
<td>ur</td>
<td>ur</td>
<td>ur</td>
<td>ur</td>
</tr>
<tr>
<td>1.</td>
<td>14</td>
<td>3.041</td>
<td>15</td>
<td>7</td>
<td>882</td>
<td>6</td>
<td>33</td>
<td>915</td>
</tr>
<tr>
<td>2.</td>
<td>15</td>
<td>2.394</td>
<td>5</td>
<td>2</td>
<td>286</td>
<td>-</td>
<td>-</td>
<td>286</td>
</tr>
<tr>
<td>3.</td>
<td>16</td>
<td>926</td>
<td>7</td>
<td>1</td>
<td>358</td>
<td>-</td>
<td>-</td>
<td>358</td>
</tr>
<tr>
<td>4.</td>
<td>17</td>
<td>3.438</td>
<td>35</td>
<td>3</td>
<td>1.743</td>
<td>8</td>
<td>44</td>
<td>1.787</td>
</tr>
<tr>
<td>5.</td>
<td>28</td>
<td>529</td>
<td>-</td>
<td>8</td>
<td>188</td>
<td>-</td>
<td>-</td>
<td>188</td>
</tr>
<tr>
<td>6.</td>
<td>38</td>
<td>1.350</td>
<td>2</td>
<td>13</td>
<td>401</td>
<td>-</td>
<td>-</td>
<td>401</td>
</tr>
<tr>
<td>7.</td>
<td>39</td>
<td>80</td>
<td>-</td>
<td>1</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td>Skupaj</td>
<td></td>
<td>11.758</td>
<td>64</td>
<td>35</td>
<td>3.881</td>
<td>14</td>
<td>77</td>
<td>3.958</td>
</tr>
</tbody>
</table>
PRILOGA 9: Ostalo - vlaganje energije v obliki strojnega dela

<table>
<thead>
<tr>
<th>Žap. št. parc.</th>
<th>Površina m²</th>
<th>Vrsta stroja (motorja)</th>
<th>Skupaj strojnih kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nafta, bencin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>traktor 47,8 kW</td>
<td>motorka 3,7 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ur</td>
<td>ur</td>
</tr>
<tr>
<td>1. 19</td>
<td>1.322</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. 25</td>
<td>4.033</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3. 34</td>
<td>331</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. 35</td>
<td>2.182</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5. 36</td>
<td>1.488</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6. 37</td>
<td>300</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7. 41</td>
<td>14.083</td>
<td>230</td>
<td>-</td>
</tr>
<tr>
<td>8. 24</td>
<td>133</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skupaj</td>
<td>23.872</td>
<td>230</td>
<td>2</td>
</tr>
</tbody>
</table>
PRILOGA 10: Pašnik - vlaganja energije v obliki snovi

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Št. parc.</th>
<th>Površina m²</th>
<th>Umetna gnojila UREA kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>22</td>
<td>5.620</td>
<td>50</td>
</tr>
<tr>
<td>2.</td>
<td>23</td>
<td>6.413</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>26</td>
<td>25.355</td>
<td>220</td>
</tr>
<tr>
<td>4.</td>
<td>27</td>
<td>4.298</td>
<td>-</td>
</tr>
</tbody>
</table>

Skupaj 41.686 270
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>št. parc.</th>
<th>Površina m²</th>
<th>Gnojila</th>
<th>Gnoj</th>
<th>Gnojevka</th>
<th>Umetna gnojila</th>
<th>Zaščitna sredstva</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>m³</td>
<td>m³</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>1.</td>
<td>1</td>
<td>4.449</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>4.628</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>4.165</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>4.198</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>6</td>
<td>8.033</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>7</td>
<td>4.298</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>8</td>
<td>926</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>9</td>
<td>4.157</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>10</td>
<td>3.048</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>11</td>
<td>4.793</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>12</td>
<td>3.240</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>13</td>
<td>8.232</td>
<td>-</td>
<td>20</td>
<td>70</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td>18</td>
<td>1.356</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14.</td>
<td>20</td>
<td>3.094</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15.</td>
<td>21</td>
<td>4.760</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16.</td>
<td>30</td>
<td>9.818</td>
<td>-</td>
<td>-</td>
<td>90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17.</td>
<td>40</td>
<td>10.000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skupaj</td>
<td></td>
<td>83.195</td>
<td>28</td>
<td>20</td>
<td>670</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

1) Deherban (v listih)
PRILOGA 12: Njiva - vlaganje energije v obliki snovi

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>Št. parc.</th>
<th>Površina m²</th>
<th>Gnojila m³</th>
<th>Seme kg</th>
<th>Zaščitna sredstva kg</th>
<th>Opombe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>14</td>
<td>3.041</td>
<td>14</td>
<td>7</td>
<td>4¹)</td>
<td>koruza</td>
</tr>
<tr>
<td>2.</td>
<td>15</td>
<td>2.394</td>
<td>10</td>
<td>58³)</td>
<td>1²)</td>
<td>rž</td>
</tr>
<tr>
<td>3.</td>
<td>16</td>
<td>926</td>
<td>4</td>
<td>16 gajb</td>
<td>-</td>
<td>krompir</td>
</tr>
<tr>
<td>4.</td>
<td>17</td>
<td>3.438</td>
<td>30</td>
<td>9⁵)</td>
<td>3⁴)</td>
<td>koruza</td>
</tr>
<tr>
<td>5.</td>
<td>28</td>
<td>529</td>
<td>3</td>
<td>-</td>
<td>0,3⁶)</td>
<td>pesa</td>
</tr>
<tr>
<td>6.</td>
<td>38</td>
<td>1.350</td>
<td>-</td>
<td>14 gajb</td>
<td>-</td>
<td>krompir</td>
</tr>
<tr>
<td>7.</td>
<td>39</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>kol.</td>
</tr>
<tr>
<td>Skupaj</td>
<td>11.758</td>
<td>61</td>
<td>67</td>
<td>8,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹) atrapin
²) deherban
³) rž (kg)
⁴) radazint 50 (l)
⁵) koruza
⁶) gesagard (kg)
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>št. parc.</th>
<th>Površina m²</th>
<th>Človeško delo</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lastna delo ur</td>
<td>najeto delo ur</td>
<td>Skupaj ur</td>
</tr>
<tr>
<td>1.</td>
<td>29</td>
<td>1.719</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>31</td>
<td>35.702</td>
<td>36</td>
<td>-</td>
<td>36</td>
</tr>
<tr>
<td>3.</td>
<td>32</td>
<td>97.521</td>
<td>103</td>
<td>5</td>
<td>108</td>
</tr>
<tr>
<td>4.</td>
<td>33</td>
<td>142.248</td>
<td>119</td>
<td>24</td>
<td>143</td>
</tr>
<tr>
<td>Skupaj</td>
<td></td>
<td>277.190</td>
<td>258</td>
<td>29</td>
<td>287</td>
</tr>
<tr>
<td>Zap. št.</td>
<td>Št. parc.</td>
<td>Površina m²</td>
<td>Človeško delo</td>
<td>Skupaj</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lastno delo ur</td>
<td>najeto delo ur</td>
<td>ur</td>
</tr>
<tr>
<td>1.</td>
<td>22</td>
<td>5.620</td>
<td>7</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>23</td>
<td>6.413</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>26</td>
<td>25.355</td>
<td>22</td>
<td>19</td>
<td>41</td>
</tr>
<tr>
<td>4.</td>
<td>27</td>
<td>4.298</td>
<td>16</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Skupaj</td>
<td></td>
<td>41.686</td>
<td>55</td>
<td>23</td>
<td>78</td>
</tr>
</tbody>
</table>
PRILOGA 16: Travnik - vlaganje energije v obliki živega dela

<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>št. parc.</th>
<th>Površina m²</th>
<th>Človeško delo</th>
<th>skupaj</th>
<th>ur</th>
<th>kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lastno delo ur</td>
<td>najeto delo ur</td>
<td>ur</td>
<td>kWh</td>
</tr>
<tr>
<td>1.</td>
<td>1</td>
<td>4.449</td>
<td>159</td>
<td>31</td>
<td>190</td>
<td>28,5</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>4.628</td>
<td>43</td>
<td>7</td>
<td>50</td>
<td>7,5</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>4.165</td>
<td>42</td>
<td>-</td>
<td>42</td>
<td>6,3</td>
</tr>
<tr>
<td>4.</td>
<td>5</td>
<td>4.198</td>
<td>125</td>
<td>42</td>
<td>167</td>
<td>25,05</td>
</tr>
<tr>
<td>5.</td>
<td>6</td>
<td>8.033</td>
<td>81</td>
<td>35</td>
<td>116</td>
<td>17,4</td>
</tr>
<tr>
<td>6.</td>
<td>7</td>
<td>4.298</td>
<td>46</td>
<td>12</td>
<td>58</td>
<td>8,7</td>
</tr>
<tr>
<td>7.</td>
<td>8</td>
<td>926</td>
<td>21</td>
<td>3</td>
<td>24</td>
<td>3,6</td>
</tr>
<tr>
<td>8.</td>
<td>9</td>
<td>4.157</td>
<td>27</td>
<td>11</td>
<td>38</td>
<td>5,7</td>
</tr>
<tr>
<td>9.</td>
<td>10</td>
<td>3.048</td>
<td>19</td>
<td>5</td>
<td>24</td>
<td>3,6</td>
</tr>
<tr>
<td>10.</td>
<td>11</td>
<td>4.793</td>
<td>32</td>
<td>10</td>
<td>42</td>
<td>6,3</td>
</tr>
<tr>
<td>11.</td>
<td>12</td>
<td>3.240</td>
<td>67</td>
<td>10</td>
<td>77</td>
<td>11,55</td>
</tr>
<tr>
<td>12.</td>
<td>13</td>
<td>8.232</td>
<td>103</td>
<td>8</td>
<td>111</td>
<td>16,65</td>
</tr>
<tr>
<td>13.</td>
<td>18</td>
<td>1.356</td>
<td>13</td>
<td>-</td>
<td>13</td>
<td>1,95</td>
</tr>
<tr>
<td>14.</td>
<td>20</td>
<td>3.094</td>
<td>28</td>
<td>12</td>
<td>40</td>
<td>6,0</td>
</tr>
<tr>
<td>15.</td>
<td>21</td>
<td>4.760</td>
<td>51</td>
<td>3</td>
<td>54</td>
<td>8,1</td>
</tr>
<tr>
<td>16.</td>
<td>30</td>
<td>9.818</td>
<td>11</td>
<td>-</td>
<td>11</td>
<td>1,65</td>
</tr>
<tr>
<td>17.</td>
<td>40</td>
<td>10.000</td>
<td>38</td>
<td>3</td>
<td>41</td>
<td>6,15</td>
</tr>
</tbody>
</table>

Skupaj 83.195 906 192 1.098 164,7
<table>
<thead>
<tr>
<th>Zap. št.</th>
<th>št. parc.</th>
<th>Površina m²</th>
<th>Človeško delo</th>
<th>živalsko delo</th>
<th>Vse delo kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lastno delo ur</td>
<td>najeto delo ur</td>
<td>skupaj ur kWh</td>
</tr>
<tr>
<td>1.</td>
<td>14</td>
<td>3.041</td>
<td>67</td>
<td>47</td>
<td>114</td>
</tr>
<tr>
<td>2.</td>
<td>15</td>
<td>2.394</td>
<td>58</td>
<td>70</td>
<td>128</td>
</tr>
<tr>
<td>3.</td>
<td>16</td>
<td>926</td>
<td>114</td>
<td>75</td>
<td>189</td>
</tr>
<tr>
<td>4.</td>
<td>17</td>
<td>3.438</td>
<td>130</td>
<td>90</td>
<td>220</td>
</tr>
<tr>
<td>5.</td>
<td>28</td>
<td>529</td>
<td>143</td>
<td>17</td>
<td>160</td>
</tr>
<tr>
<td>6.</td>
<td>38</td>
<td>1.350</td>
<td>85</td>
<td>94</td>
<td>179</td>
</tr>
<tr>
<td>7.</td>
<td>39</td>
<td>80</td>
<td>43</td>
<td>4</td>
<td>47</td>
</tr>
<tr>
<td>Skupaj</td>
<td></td>
<td>11.758</td>
<td>640</td>
<td>397</td>
<td>1.037</td>
</tr>
<tr>
<td>Zap. št.</td>
<td>št. parc.</td>
<td>Površina m²</td>
<td>Človeško delo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>19</td>
<td>1.322</td>
<td>13</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>2.</td>
<td>25</td>
<td>4.033</td>
<td>12</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3.</td>
<td>34</td>
<td>331</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>35</td>
<td>2.182</td>
<td>255</td>
<td>53</td>
<td>308</td>
</tr>
<tr>
<td>5.</td>
<td>36</td>
<td>1.488</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>37</td>
<td>300</td>
<td>134</td>
<td>36</td>
<td>170</td>
</tr>
<tr>
<td>7.</td>
<td>41</td>
<td>14.083</td>
<td>(250)*</td>
<td>-</td>
<td>(250)</td>
</tr>
<tr>
<td>8.</td>
<td>24</td>
<td>133</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skupaj</td>
<td>28.872</td>
<td>(664)</td>
<td>91</td>
<td>(755)</td>
<td>(113,25)</td>
</tr>
</tbody>
</table>

*Oranje ceste s snežnim plugom se tu ne upošteva, gre pod "izhode"
9 VIRI

5. ČOKL, M., "Gozdarski in lesnoindustrijski priročnik", 5. izd., B.F. VTOZD gozdarstvo, Ljubljana

8. GLIHA, S. in dr., 1980: "Gospodarjenje na kmetijah", KIS, Ljubljana

