KO气血POPOCHILOR ozonatih opravljeneh
RASIKOVALNEH DELA V OKVIRU POGODBE št. 2311-05-000175 O
DODATNI PROUČITVI GLIVE POZROČITELJICE JAVOROVEGA
RAKA.

1) Opisno poročilo o realizaciji pogodbe:

Dodatna proučevanja glive Eutypella parasitica, ki povzroča javorov rak, so obsegala naslednja dela:

a. Meritve drevja z vsemi doslej najdenimi okužbami z javorovim rakom (67 okužb)

b. Izbor, odkazilo, organizacija poseka, prevoz v Laboratorij za varstvo gozdv GIS sedmih dreves gorskega javora v Tivoli, ki so bila okužena z javorovim rakom.

c. Odkazilo, organizacija poseka, prevoz v Laboratorij za varstvo gozdv GIS gorskega javora v bližini vasi Topol pri Medvodah in treh dreves na Kozjanskem, ki so bila okužena z javorovim rakom.

d. Sekcija dreves na kolute debeline 10 cm, pridobivanje vzorcev lesa in izolacije vseh gliv iz lesa z namenom ugotoviti razširjenost glive v lesu okuženega drevsa (cca 1500 izolacij).

e. Morfološka analiza rakavih ran (velikost rakov, površina s trosišči glive, površina brez skorje, površina s pritirjeno skorjo).

g. Priprava objav, ki so navedene v rubriki Doseženi rezultati, sodelovanje sodelavcev projekta na EPPO konferenci o Phytophthora ramorum in drugih gozdnih škodljivih organismih (Falmouth, Velika Britanija, 5. – 7. oktobra 2005).

h. Obsežne laboratorijeske raziskave pridobljenih izolatov glive – značilnosti rasti v kulturi (hitrost, oblika rasti), morfološke značilnosti glive, spremljajoče vrste gliv in njihova determinacija.
i. V pripravi sta dva znanstvena prispevka o značilnosti bolezni in njene razširjenosti v Sloveniji, ki ju ne navajamo v rubriki 4. Doseženi rezultati, ker šele zbiramo podatke in rezultate.

2) Ocena o stopnji realizacije programa in zastavljenih ciljev (samoevalvacija):
Program se je izvedel po internem načrtu del, obsega vse cilje Pogodbe.

3) Morebitne spremembe programa in njihova utemeljitev:
Jih ni.

4) Doseženi pisni rezultati so v prilogah (Priloga 1 je dodana zaradi popolnosti informacije in ni rezultat tega projekta):

Priloga 1:

Priloga 2:

Priloga 3:

Priloga 4:
Jurč D., Nikica Ogris Introduction to Eutypella canker of maple. Predstavitev na EPPO Conference on Phytophthora ramorum and other forest pests, Falmouth, Cornwall, GB, 2005-10-05/07

Priloga 5:
Nikica Ogris, Dušan Jurč and Maja Jurč. Spread risk of Eutypella canker of maple in Europe. Predstavitev na EPPO Conference on Phytophthora ramorum and other forest pests, Falmouth, Cornwall, GB, 2005-10-05/07.

Priloga 6:

Priloga 7:

Priloga 8:

Priloga 9:
Priloga 10:

Priloga 11:

Poročilo sestavila
Doc. dr. Dušan Jurc

Direktor Gozdarskega inštituta Slovenije
prof. dr. dr. h. c. Niko Torelli

in Nikica Ogris

Ljubljana 30. 11. 2005

Prejemniki:
- naročnik (Ministrstvo za kmetijstvo, gozdarstvo in prehrano)
- Gozdarska knjižnica
- Arhiv GIS
Priloga 1:
Obvestilo o najdbi neobičajnih rakavih ran na gorskem javoru (Acer pseudoplatanus) v Tivoliju v Ljubljani in opis dela za ugotovitev povzročitelja

Sporočili ste nam, da je potrebno prve pojave neke bolezni v skladu z direktivo 2000/29 (16. člen, 1. odstavek) sporočiti Evropski Komisiji in da boste po dokončni izvedbi postopka determinacije obvestili Komisijo za karantenske organizme. Zaradi verjetne pomembnosti najdhe bomo v nadaljevanju natančno popisali vse pomembne dogodke in naše ukrepanje v zvezi z determinacijo glive ter predvideni potek dela.

Zaradi neobičajno širokih askospor (po literaturnih podatkih so askospore široke 2,0-2,3 μm, askospore v vzorcih iz Tivolija pa so široke (2,0-) 2,9 (4,2) μm), smo se odločili, da bomo opravili determinacijo glive z molekularno metodo (PCR). Ker v GeneBank ni deponirana sekvencna Eutypella parasitica, smo v CBS naročili tipski izolat te glive, ki ga hranijo v tekočem dušiku. Naročilo so sprejeli in izolat bomo dobili v treh do štirih tednih (konec junija 2005). Primerjali bomo sekvenco ITS regije tipskega izolata in nasih dveh izolatov.

Revirna gozdarka Nataša Strle nam je 10.6.2005 priskrbela karto Rožnika v merilu 1:5.000, na kateri bomo označevali lokacije najdenih okuženih javorov.

Načrt dela do konca leta 2005:
1) Kolikor mogoče hitro bomo izvedli dokončno determinacijo glive z molekularnimi tehnikami (po prejetju tipskega izolata). V kolikor ne bo mogoče izvedba na GIS, se bomo povezali z zunanjim laboratorijem. V kolikor bodo rezultati ustrezni (potrditev determinacije z molekularno metodo)
bomo napisali prispevek za internetno stran New Disease Reports in za objavo v reviji Plant Pathology.

3) Detajlno bomo analizirali morfologijo rakov (ugotovili bomo starost, prirastek, površino), simptomatično bolezni, značilnosti trosišč v naravi in v laboratorijski kulturi. Prva opažanja kažejo na delne razlike v primerjavi s podatki iz Severne Amerike. V kolikor bomo te razlike potrdili, jih bomo opisali v prispevku za revijo Forest Pathology. Opravili bomo izolacije glive iz lesa okuženih javorov z namenom ugotoviti prisotnost glive v lesu od rakave rane proti krošnji in proti koreninam (podatek je izjemno pomemben za morebitno načrtovanje iztrebljenja glive pri nas; z okuženim lesom namreč gliva lahko ostane v gozdu).

4) Ustrezen bi bilo izvesti Pest Risk Analysis za Slovenijo (Evropo?) vendar dvomimo, da je to mogoče v okviru redne dejavnosti v projektu Poročevalska, diagnostična in prognostična služba za varstvo gozdov.

Sestavila
doc. dr. Dušan Jurc

Direktor GIS
prof. dr. dr. h. c. Niko Torelli

in Nikica Ogris

Ljubljana, 13.6.2005

V vednost:
- g. Jože Falkner, Gozdarski sektor MKGP
- g. Bojan Vomer, Gozdarska inšpekcija
- g. Jošt Jakša, CE ZGS
Priloga 2:
First report of Eutypella canker of *Acer pseudoplatanus* in Europe

D. Jurec*, N. Ogris1, B. Slippers2 and J. Stenlid2

1 Slovenian Forestry Institute, Vrchna pot 2, 1000 Ljubljana, Slovenia. 2 Swedish University of Agricultural Sciences, Department of Forest Mycology and Pathology, Box 7026, S-750 07 Uppsala, Sweden

dusan.jurec@gozdis.si

![Image of tree](image)

At the end of May 2005 distinctive oval bark lesions were found on the trunks of *Acer pseudoplatanus* (sycamore) on Rožnik hill in the centre of Ljubljana, the capital of Slovenia. A characteristic feature of the cankers was that the bark remained in place except at the centre (oldest part). The cankers were located mostly on the lower portions of the trunks. Intensive surveys around Rožnik hill revealed a further 19 affected trees by the end of June. The disease was well established and the main trunks of three trees had snapped and fallen over. The furthest distance between affected trees was 10.6 km, suggesting an initial slow spread, though we do not know when the disease first appeared.

Figure 1: Eutypella canker on sycamore maple. Dead bark is persistent and falling off only in the oldest part of the canker; black perithecial stromata are visible.

![Image of Eutypella canker](image)

Wait to light cream coloured mycelial fans were present in the bark and were significantly more developed along the advancing edge of the lesions. Perithecia were always present on the oldest parts of the cankers and were extensive (Fig. 1), with necks up to 5 mm long and poorly developed stroma. Ascosporas measured 8.5 (5.5-12) × 3-4) μm, asci 85.5 (61-117) × 7.5 (5-10) μm (Fig. 2A), and conidia 25 (12.5-35) × 2 (1-2.5) μm (Fig. 2B). We identified this fungus as *Eutypella parasitica*. Although the range of sizes was slightly different to those given by Davidson and Lorenz (1938), all other morphological characteristics (Fig. 3) agreed with the Original description. The rDNA ITS region of two isolates were sequenced (GenBank accession numbers DQ118964, DQ118965) and compared with the ex-type isolate of *E. parasitica* (CBS No 210.39, GenBank accession number DQ118966). All three sequences were identical.

Figure 2 Asci with ascosporas (A), conidia from culture (B) (bar = 20 μm)
In June 2005 we inoculated trunks of sycamore with two isolates of *E. parasitica*. After 40 days, control wounds without the fungus had begun to heal while inoculated wounds showed some advancing necrosis. We were unable to reisolate the fungus. Disease development is slow, however, and up to two years are needed to obtain positive results (French, 1969). We will continue to monitor our trials but have no doubt that the symptoms observed are due to *E. parasitica*.

Eutypella canker of *Acer* spp. (maples) is a destructive disease found until now only in North America. Sycamore and other *Acer* spp. are widespread in Europe and this first report from Slovenia is therefore of immediate concern.

Acknowledgements

We wish to thank Dr Eric Boa (CABI Bioscience Egham) for his editorial suggestions and changes.

References

Priloga 3:
Znanstvena razprava

Javorov rak (Eutypella parasitica: Ascomycota: Fungi) na gorskem javorju in maklenu: značilnosti in razlike

Eutypella canker (Eutypella parasitica: Ascomycota: Fungi) on sycamore maple and field maple: characteristics and differences

Nikica OGRIS¹, Dušan JURC², Maja JURC³

Izvleček:

Ključne besede: javorov rak, Eutypella parasitica, morfološka javorov, maklen, gorski javor, Acer spp., Acer campestre, Acer pseudoplatanus

Abstract:

Eutypella canker of maple is described, morphological characteristics of the disease on sycamore and field maple and the differences between the disease on the two hosts are treated. The disease is provoked by the parasitic fungus Eutypella parasitica. Eutypella canker is an economically important disease of several maple species in North America, where it is spread mostly in the surroundings of the Great Lakes in the USA and Canada. In Europe it was first found in Slovenia on sycamore maple. In this contribution field maple (Acer campestre L.) is reported as a new host for the fungus. The morphological characteristics of the disease on the two different hosts are very similar. The microscopic properties are the same. Slovenia as a country and its forestry profession hold the responsibility to eradicate or at least slow down the spread of the disease in the natural area of maples, which comprises most of Europe.

Keywords: Eutypella canker, Eutypella parasitica, morphology, maple field, sycamore maple, Acer spp., Acer campestre, Acer pseudoplatanus

¹ N. O., univ. dipl. inž. gozd., Gozdarški inštitut Slovenije, Večna pot 2, 1000 Ljubljana, Slovenija – Tel.: (01) 200 78 00 – Fax: (01) 257 35 89 – e-mail: nikica.olbris@gozdis.si
² doc. dr. D. J., univ. dipl. inž. biol., Gozdarški inštitut Slovenije, Večna pot 2, 1000 Ljubljana, Slovenija – Tel.: (01) 200 78 00 – Fax: (01) 257 35 89 – e-mail: dusan.jurc@gozdis.si
³ doc. dr. M. J., univ. dipl. inž. gozd., BF, Oddeleč za gozdarstvo in obnovljive gozdne vire, Večna pot 83, 1001 Ljubljana, Slovenija – Tel.: (01) 423 11 61 – Fax: (01) 257 11 69 – e-mail: maja.jurc@bf.uni-lj.si
1 UVOD
INTRODUCTION

2 JAVOROV RAK NA GORSKEM JAVORJU
EUTYPELLA CANKER ON SYCAMORE MAPLE

V začetni fazi bolezni okužena škorja odmre, se rahlo ugrezne, barva odmrlte skorje postane temnejša, rahlo porjavi in na robu rekroze nastane neizrazita kalusna nabrekлина. Zaradi počasnega napredovanja glive v skorji je prvih nekaj let okužba slabo opazna (slika 1). Nekroza se povečuje skupaj z rastjo drevesa in nastane tipična rakava rana. V skorji v centralnem delu raka se pričnejo oblikovati peritecije po petih do osmih letih od okužbe. Na površini skorje opazimo temne predele s črnnimi vratovi peritecijev. Ti so dolgi do nekaj milimetrov in izraščajo iz skorje v velikem številu (slika 2). Pogosto so združeni v skupine od 10 do 40, vendar so skupine tudi mnogo večjše in neprekinjeno prekrivajo obsežno površino odmrlte skorje. Med kamricami peritecijev v skorji in površino skorje se oblikuje črt, gost preplet hif, ki ga imenujemo stroma in ga na prerezu skorje opazimo kot tanko črno plast.
Posamezne skupine vratov peritecijev so med seboj lahko ločene z razpokami v skorji. Včasih razporeditev vratov peritecijev na skorji nakazuje letni prirast glive v skorji. Takrat so vratovi peritecijev razporejeni v elipsastihtrakovih, ki so široki en do dva centimetra (slika 3). Peritecijci nastajajo v skorji neprestano, stari odmirajo in med njimi se razvijajo novi. Med vratovi peritecijev na površini raka nastaja črna,stromatična plast. Ta se s stereostijo dviguje ned površino skorje in nastajajo obsežne, rahlo dvignjene črne izbokline, iz xaterih izraščajo črni vratovi peritecijev. Tudi ti se s starostjo podaljšujejo in rahlo debelijo.

Značilni znak okužbe z *E. parasitica* je obsežen hišni preplet v skorji: rakave rane in še posebej na njihem robu, ki je v obliki tankih miceljskih pahljačic bele do rahi krem barve (slika 5). Te pahljačice se razvijajo v okuženi skorji dve leti po nastanku okužbe (LACHANCE / KUNTZ 1966). Na drevesu je običajno ena rakava rana, najpogosteje je locirana na spočnjem delu debla, to je

Slika 3: Skorja odpada na najstarejšem delu okužbe, vreštvi peritecijski so koncentrično razporejeni na veliki površini raka

Figure 2: The bark is falling off from the oldest part of infection, perithecial necks are concentrically arranged on large surface of the canker

Slika 4: Močno iznakaženo deblo s starim javorovim ržkom, v izpostavljen les so se naselješe druge glive razkrojevalke lesa

Figure 4: Considerably deformed trunk with an old Sutypella canker: other wood degrading fungi also colonized the exposed wood

Slika 5: Pahljačice podgobja v okuženi skorji so bele do krem barve

Figure 5: Mycelial fans in the infected bark are white to cream coloured

Slika 6: Stromata in perithecia se lahko oblikujejo tudi na drevesu

Figure 6: Stromata with perithecia can form also on exposed wood
navadno do višine 3,7 m nad tlemi, ki predstavlja najvrednejši sortiment debla (KLEIJUNAS / KUNTZ 1974). Na okuženem lesu brez skorje se lahko oblikujejo strome s periteciji, vendar je to redko (slika 6) (KLEIJUNAS / KUNTZ 1974, DAVIDSON / LORENZ 1938).

S prostimi očmi torej vidimo na odmrli skorji črne predele rakave rane, ki se od blizu kažejo kot črne izboklince. To so vratovi peritecijev, ki množično poganjajo iz površine odmrle skorje. Periteciji se razvijejo v skorji in imajo premer 0,6-1,0 mm, vratovi so dolgi do 5 mm. Dolžina vratov je odvisna od globine nastanka peritecija v skorji. V peritecijih se oblikujejo aski. Aski so majhnhi, s podaljšanim spodnjim delom (stipa), ki meri 10-40 × 1,5 μm in širšim zgornjim delom z askosporami, ki meri 32-40 × 6-7 μm. Askospore so nepravilno unij-, bi- ali multi- seriatne, enocelične, rjave, rahlo ukrivljene in merijo 8-11×2-2,3 μm (DAVIDSON / LORENZ 1938, SINCLAIR et al. 1989).

Poleg teleomorfa (peritecijev z aski in askosporami – spolna trosišča s trosi, ki se razvijejo po redukcijski delitvi kromosomov) oblikuje gliva E. parasitica tudi anamorfo (konidiome s konidiji – nespolna trosišča s trosi, ki nastanejo na vegetativni način). Konidiji nastajajo v skorji v spremenljivih konidiomih, ki jih po morfologiji lahko označimo kot piknidije ali acervule. Gliva E. parasitica oblikuje anamorfo v naravi in v čistih kulturi. Konidioni, ki se oblikujejo v skorji, imajo lastnosti rodu Libertella (red Melanconiales) zaradi odstotnosti jasne stene piknidija in zaradi občasnega nastanka izven strome in lastnosti rodu Cytosporina (red Sphaeropsidales) zaradi plasti konidioloforov, ki včasih obdajajo celotno votlino konidioma in zaradi tega, ker konidioni včasih nastane v stromi (KLEIJUNAS / KUNTZ 1972). Konidioni se v čistih kulturi razvijejo v petih do šestih tednih in so podobni sporodohiju, so okrogli, s premerom 0,75 mm ali manj in prekriti z rumeno maso konidijev. Konidioni nastajajo v čistih kulturi holoblastično in v zaporedju na konidiogenih celicah, na katerih ostanejo vidne zažetine (angl. anelations). Nastajajo pa tudi s simpodialnim brstenjem na konidiogenih celicah, na katerih ostanejo vidne brazgotine (GLAWE 1983). Razvoj enakih konidijev v istih konidiomih na dva različna načina pri eni vrsti gliv je zelo neobičajen. Konidiji so hialini, ukrivljeni v obliki črke U, na končih koničasti in merijo 17-32 × 1,2-1,8 μm (DAVIDSON / LORENZ 1938, SINCLAIR et al. 1989).

3 JAVOROV RAK NA MAKLENU
EUTYPELLA CANKER ON FIELD MAPLE

V starosti je javorov rak na maklenu pravilne elipsaste oblike (slika 9). Na robu rakeve rane lahko oblikuje debel kalusni rob, ki nakazuje, da gliva v nekaterih predelih na robu rane odmre in drevo
začne rano preraščati. V tem primeru, čeprav je rak že star, se oblikujejo peritecije le na osrednjem delu raka, kjer je skorja že odmrla. Če pa je skorja že odpadla, kar je pogosto pri starejših rakah, se lahko oblikujejo peritecije na obarvanem in trohnečem lesu.

Slika 7: Mlada okužba na maklenu. Odlomljena veja je predstavljala vstopno mesto za glivo. Na osrednjem delu raka so vidna črna trošiča glive

Slika 7: Young infection on field maple. Broken branch served as entrance for the fungus. On the central part of the canker black fungal fruitbodies are seen

Slika 8: Stara okužba na maklenu. Okužba je v tem primeru potekala skozi poškodbo debla. Opaznih je veliko trošič na lesu, med razpokami v skorji in na skorji. Opazimo tudi kalusne nabrekline in rahlo deformacijo debla. Skorja ostane dolgo pritrdjena in ne odpada

Slika 8: Old infection on field maple. In this case, the infection occurred through trunk wound. Numerous fungal fruitbodies developed on the wood, in bark crevices and on the bark. Wound wood is formed at the canker edge, the trunk is deformed. The bark remains attached and is not falling off
Slika 9: Javorov rač na maklenu je v starosti v obliki pravilne elips. Tudi v tem primeru je bilo vstopno mesto za glijo odlomljena veja
Figure 9: Old Eutypella canker on field maple is in the shape of symmetrical ellipse. Branch served as entrance point for the fungus also in this case

Slika 10: Mčelijske pahljačice v maklenovi skorji so specifični determinacijski znak za glivc Eutypella parasitica. Vidno je odmiranje tkiv skorje 1-3 mm pred podgobjem
Figure 10: Mycelial fans in the bark of field maple are specific symptom for the fungus Eutypella parasitica. The bark tissues are necrosed 1-3 mm in front of the mycelium

4 PRIMERJAVA JAVOROVEGA RAKA NA MAKLENU IN GORSKEM JAVORJU
COMPARISSON OF EUTYPELLA CANKER ON FIELD MAPLE AND SYCAMORE MAPLE

Zdi se, da bolezen pri maklenu počasneje napreduje kot pri gorskem javoru. Verjetno je vzrok v tem, da ima maklen nekoliko trši les ali več inhibitornih snovi kot gorski javor, ali pa so fiziološki procesi proti razšečanju glive v skorji uspešnejši kot pri gorskem javoru. To nakazuje debel zarastečajoč se rob rakave rane na eni izmed okužb na maklenu (slika 9). Kaže, da pri maklenu ostaja
skorja v sredini rakaste rane dalj česa pritrjena na drevo kot pri gorskem javoru. Prirastne cone glive so na površini raka pri maklenu slabopazne zaradi razpokanosti skorje.

Tudi v mikroskopskem pogledu sta javorov rak na maklenu in gorskem javorju zelo podobna, t.j. skoraj identična v mejah biološke variabilnosti. Primjerjava velikosti askospor in askov različnih osebkov glive na gorskim javorju in maklenu: kaže na identičnost glive še posebej, če jih primerjamo z velikostmi, ki jih navajata avtorje opisa glive E. parasitica (preglednica 1). Velikost peritecijev, kamrice in vratov peritecijev iz rakov na gorskim javorju in maklenu je enaka.

Preglednica 1: Primerjava dolžin in širin askospor in askov glive E. parasitica iz gorskega javora in maklena (Slovenija) ter iz rdečega javora (Severna Amerika)

Table 1: Comparison of lengths and widths of ascospores and asci of the fungus E. parasitica from sycamore maple and field maple (Slovenia) and from red maple (North America)

<table>
<thead>
<tr>
<th></th>
<th>Askospore</th>
<th>Aski</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dolžina (µm)</td>
<td>Širina (µm)</td>
</tr>
<tr>
<td>Gorski javor</td>
<td>(5,5-) 8,5 (-12)</td>
<td>(2-) 3 (-4)</td>
</tr>
<tr>
<td>(A. pseudooplatus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maklen</td>
<td>(6,5-) 9 (-12)</td>
<td>(2-) 3 (-3,5)</td>
</tr>
<tr>
<td>(A. campestre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rdeči javor</td>
<td>8 - 11</td>
<td>2 - 2,3</td>
</tr>
<tr>
<td>(A. rubrum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DAVIDSON / LORENZ 1938)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 RAZPRAVA IN ZAKLJUČKI
DISCUSSION AND SUMMARY

Morfološke značilnosti javorovega raka na gorskem javorju in javorovega raka na maklenu so si nadvse podobne. Pri obeh vrstah javora je rak pravilne elipsaste oblike, okužba nastane na enak način vendar izgled rakavih ran nakazuje, da se nekroza pri maklenu šir nekoliko počasneje. Pri obeh vrstah javora najdemo pod okuženo skorjo micelijske pahljačice, gliva najprej oblikuje trosišča na najstarejšem delu raka, bolezen povzroča deformacijo debla.

Javorov rak se v Severni Ameriki na splošno pojavlja na majhnem številu javorov v sestojih (pod 5 %), vendar pa se v nekaterih sestojih nahaja na tudi do 40 % vseh javorov (GROSS 1984). Oboljela drevesa imajo povprečno prebarvanega in trohnečega 12 % skupnega volumna in 49 % prodajnega volumna, kar pomeni polovično izgubo pri prodaji lesa na trgu. To pa naredi javorov rak gospodarsko pomembno bolezen.

Javorov rak je pomemben tudi iz ekološkega in socialnega vidika. Drevesa z javorovim rakom so manj mehansko stabilna in zato dozvoljena za vetrolome, snegolome in žledolome, zaradi česar so sestoji s primejo javorjev manj stabilni. Javorov rak kazi estetski videz javorov, kar je pomemben dejavnik pri uporabi v parkih in d-ugih zelenih površinah v urbanem okolju. V Sloveniji se v parkovnih površinah pogosto sadi srebrni javor, pahljačasti javor, ameriški javor, in drugi okrasni javorji.

Javori so pomembni sestavni del gozdov v Sloveniji, saj so avtohtono razširjeni skoraj po celi Sloveniji. Javorov rak lahko v Sloveniji najbolj prisegade gorski javor, ki ga je v lesni zalogi 2,4 % (7.492.000 m³) in je slovenska 7. najpogostejša drevesna vrsta, maklen, ki ima lesno zalogo 146.000 m³ in ostrolistni javor, ki ima lesno zalogo 121.000 m³ po podatkih o gozdovih za leto 2004 (Zavod za gozdove Slovenije). Verjetno lahko okuži in prisegade tudi trokrip javor, topokrip javor in tatarski javor. Za ugotovitev dovzetnosti javorov, ki še niso znani gostitelji javorovega
raka, bi bilo ustrezeno opraviti inokulacije glive v njihovo skorjo in les v čim krajšem času, saj dokaz patogenosti traja v primeru javorovega raka več let.

6 ZAHVALA
ACKNOWLEDGMENT

7 VIRI
REFERENCES

GROSS, H. L., 1984. Impact of Eutypella canker on the maple resource of the Owen Sound and Wingham forest districts.- Forest Chronicle, 60, 1, s. 18-21.

Priloga 4:
Predstavitev na EPPO Conference on Phytophthora ramorum and other forest pests, Falmouth, Cornwall, GB, 2005-10-05/07
Introduction to Eutypella canker of maple

Dušan Jurec and Nikica Ogris
Slovenian Forestry Institute, Večna pot 2, 100C Ljubljana, Slovenia

Presented at: EPPO Conference on Phytophthora ramorum and other forest pests, Falmouth, Cornwall, GB, 2005-10-05/07

IDENTITY
Name: Eutypella parasitica
R.W. Davidson & R.C. Lorenz (Davidson and Lorenz 1938)
Synonyms: None
Taxonomy:
Diatrypaceae,
Diatrypales,
Sordariomycetidae,
Ascomycetes,
Ascomycota,
Fungi (Kirk et al. 2001)
HOST PLANTS

In the natural areal of fungus in North America, the hosts are maples (Acer spp.). It is most common on sugar maple (Acer saccharum Marsh.) and red maple (A. rubrum L.).

It occurs infrequently on boxelder (A. negundo L.), Norway maple (A. platanoides L.), silver maple (A. saccharinum L.), black maple (A. nigrum Mich.), sycamore maple (A. pseudoplatanus L.), and striped maple (A. pennsylvanicum L.) (Kliejunas and Kurtz 1974).

In Europe (Slovenia) it occurs on sycamore maple (Acer pseudoplatanus) and field maple (Acer campestre L.) (Ogris and Jurc, 2005, in press)

RANGE

North America: USA – 14 states (Minnesota, Wisconsin, Illinois, Indiana, Michigan, Ohio, Pennsylvania, New York State, Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, Vermont)

Canada (Ontario, Quebec)

Europe: Slovenia (environs of Ljubljana)
RANGE

BIOLoGY

- Ascomata are inactive under dry conditions. When there are at least 2.5 cm of rainfall and the temperature is above 4 °C, it takes approximately two hours for fungal spores to be produced in the perithecia, which are then dispersed in groups of eight and spread by the wind as a unit.
- The greatest number of spores spread in stands at a height of 1.2 m, within a radius of about 25 m from the source of the spores (old infection).
BIOLOGY

The fungus infects trees only through exposed wood tissue, which is usually a dead branch with a diameter of up to 5 cm or a wound on the trunk that has not healed quickly. The mycelium spreads from the stump of the branch to the trunk and creates a perennial canker on the trunk, which can then grow for decades along with the tree.

BIOLOGY

One symptom of the disease is the slow increase in an elongated oval canker wound, which does not lose its bark due to the thick hyphal overgrowth in the bark that fixes onto the wood. The canker grows in height on average 1-2 cm per year, but usually less so in width.

Five to eight years after the bark dies off, perithecia begin to form in the poorly developed stroma. Perithecia continually arise in the stroma and, as the old ones die, young ones are formed. Therefore spores can always be released when the temperature and moisture conditions are favorable.
BIOLOGY

In certain hosts, conidiomata of the genera *Libertella* and *Cytosporina* will also usually develop in the stroma and between the perithecia, even conidiogenous cells produce conidia in two ways. Conidia are not germinal and therefore are not important for spreading the disease.

The fungus overgrow the wood underneath the infected part of the bark and cause brown wood rot. Decay is slow, although due to the long duration of the infection the tree often breaks at the infected area.

BIOLOGY

When the infected trunk lies on the ground, perithecia will develop over the most of the surface of the bark and will produce spores for at least two years more.

DETECTION AND IDENTIFICATION

The infected bark dies off and sinks in slightly, the color of the dead bark becomes darker, usually slightly brownish, and at the edge of the necrosis there is a poorly defined callous swelling. Due to the slow progress of the fungus in the bark the infection is hardly noticeable for the first few years.

DETECTION AND IDENTIFICATION

After 5 to 8 years, perithecia start to form in the central part of the canker in the poorly defined stromata. On the surface of the bark there are dark regions with black stroma and the black perithecial necks, which are a few millimeters long and grow out of the bark or stroma.
DETECTION AND IDENTIFICATION

In some hosts (e.g. *Acer saccharum*), the edge of the canker is often deformed, because the fungus dies off in certain regions of the bark and an extensive calloused edge is formed that closes the wound irregularly.

DETECTION AND IDENTIFICATION

In sycamore maple (*A. pseudoplatanus*) boxelder (*A. negundo*), and Norway maple (*A. platanoides*), the callous is usually in the form of a regular ellipse, although it can occasionally be an almost perfect circle, without a deformed edge.
DETECTION AND IDENTIFICATION

Stromata with black perithecia or black perithecia alone can cover an considerable area of the canker, they are sometimes arranged in a concentric pattern and each circle represents the yearly growth of the fungus in the bark.

DETECTION AND IDENTIFICATION

An important difference between Eutypella parasitica and other canker diseases is that the bark which has died off remains fixed to the canker wound for a very long time.
DETECTION AND IDENTIFICATION

Old Eutypella cankers completely deform the trunk and various fungi can then invade the exposed wood causing wood decay and their sporophores can form on the open canker wound.

DETECTION AND IDENTIFICATION

A characteristic sign of infection with *E. parasitica* is an extensive hyphal overgrowth in the bark of the canker wound, particularly at its edge, which forms small thin mycelial fans with a white to slightly cream color.
DETECTION AND IDENTIFICATION

Stromata with perithecia can also form in infected wood without bark, but this is rare.

MORPHOLOGY

Perithecia have a diameter of 0.6-1.0 mm and their necks are up to 5 mm long; their length is dependent on the depth of formation of perithecia in the bark.
MORPHOLOGY

Conidia are formed in variable conid:omes, which can be designated as pycnidium or acervulus by morphology. Conidia are hyaline, bent into a U shape, pointed at the ends, and measure 17-32 \times 1.2-1.8 \mu m.

MORPHOLOGY

Asci are small with an elongated bottom part (stipe), which measures 10-40 \times 1.5 \mu m, and a widened upper part with ascospores, which measures 32-40 \times 6-7 \mu m. Ascospores are irregular, uni-, bi- or more seriate, one-celled, brown, slightly bent, and measure 8-11 \times 2-2.3 \mu m.
CONTROL MEASURES

Removing infected parts of the trunk from the stand is recommended in order to control the disease.
Removing branches from trees to a height of three meters is recommend for preventing infection in young trees.
In infected decorative trees, cutting out the bark around the entire edge of the canker is recommended and may halt the spread of the fungus. However, this proposal is in opposition to the finding that the fungus can grow from dead into living tissue and the success of this method has not been proved.
Poisoning the tree with Na-arsenite destroys the fungus on the edge of the canker, but does not prevent the formation of ascomata and ascospores.

Comparison with similar species

Botryosphaeria dothidea (Müg.) Ces. & De Not. on Norway maple (*Acer platanoides*)
Some more photographs

Thick, decayed branch as an infection point

Some more photographs

Old infection
Some more photographs

- Canker wounds are often covered with algae and mosses.

Some more photographs

- Old infection
Some more photographs

Canker almost girdled the trunk.

Some more photographs

In some infections the rate of canker growth is more than 1-2 cm per year – here, the height of the canker is nearly 3 m.
THANK YOU FOR YOUR ATTENTION
Priloga 5:
Spread risk of Eutypella canker of maple in Europe

Nikica Ogris¹, Dušan Jurc¹ and Maja Jurc²

¹ Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
² Department for Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Večna pot 83, 1000 Ljubljana, Slovenia

Presented at: EPPO Conference on Phyllosticta ramorum and other forest pests, Falmouth, Cornwall, GB, 2005-10-05/07

Introduction

- We present a rule-based model of Eutypella parasitica spread risk in Europe.
Methods

- Four predicted variables were mapped in a GIS to generate the model of *Eutypella parasitica* establishment and spread risk.
- Spread risk is defined as a location's potential to produce inoculum and further disperse the disease to additional individual maples and locations.

![Image](image.png)

### Variable	Weight
Host species index | 6
Precipitation | 2
Temperature | 2
Relative humidity | 1

\[
S = \frac{\sum_{i}^{n} W_{i} R_{ij}}{\sum_{i}^{n} W_{i}}
\]

Host score

- Known susceptibility of host species to pathogen in Europe
- Size and continuity of natural distribution of host species

<table>
<thead>
<tr>
<th>Host Score</th>
<th>Scientific name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Acer pseudoplatanus</td>
<td>Sycamore maple</td>
</tr>
<tr>
<td>8</td>
<td>Acer platanoides</td>
<td>Norway maple</td>
</tr>
<tr>
<td>5</td>
<td>Acer campestre</td>
<td>Field maple</td>
</tr>
<tr>
<td>3</td>
<td>Acer monspessulanum</td>
<td>Montpelier maple</td>
</tr>
<tr>
<td>3</td>
<td>Acer opalus</td>
<td>Italian maple</td>
</tr>
<tr>
<td>3</td>
<td>Acer tataricum</td>
<td>Tatarian maple</td>
</tr>
<tr>
<td>2</td>
<td>Acer cappodocicum</td>
<td>Coliseum maple</td>
</tr>
<tr>
<td>2</td>
<td>Acer heldreichi</td>
<td>Heldreich's maple</td>
</tr>
<tr>
<td>2</td>
<td>Acer hycanum</td>
<td>Balkan maple</td>
</tr>
<tr>
<td>2</td>
<td>Acer neapolitanum</td>
<td>Neapolitan maple</td>
</tr>
<tr>
<td>1</td>
<td>Acer lobelli</td>
<td>Lobel's maple</td>
</tr>
<tr>
<td>1</td>
<td>Acer sempervirens</td>
<td>Cretan maple</td>
</tr>
<tr>
<td>1</td>
<td>Acer velutinum</td>
<td>Velvet maple</td>
</tr>
</tbody>
</table>
Host species index

Temperature

- Temperatures and assigned ranks ranked 0-5 from least to most suitable for spread of the pathogen according to laboratory experiments.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>24-28</td>
</tr>
<tr>
<td>4</td>
<td>19-24; 28-30</td>
</tr>
<tr>
<td>3</td>
<td>14-19; 30-32</td>
</tr>
<tr>
<td>2</td>
<td>9-14; 32-34</td>
</tr>
<tr>
<td>1</td>
<td>4-9; 34-36</td>
</tr>
<tr>
<td>0</td>
<td><4; >36</td>
</tr>
</tbody>
</table>
Moisture variables

- Precipitation
- Relative humidity

<table>
<thead>
<tr>
<th>Precipitation (mm)</th>
<th>Relative humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>100</td>
<td>>90</td>
</tr>
<tr>
<td>80-100</td>
<td>85-90</td>
</tr>
<tr>
<td>60-80</td>
<td>80-85</td>
</tr>
<tr>
<td>40-60</td>
<td>75-80</td>
</tr>
<tr>
<td>20-40</td>
<td>70-75</td>
</tr>
<tr>
<td><20</td>
<td><70</td>
</tr>
</tbody>
</table>

Calibration of the model

<table>
<thead>
<tr>
<th>Rank</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>24-28</td>
</tr>
<tr>
<td>4</td>
<td>19-24; 28-30</td>
</tr>
<tr>
<td>3</td>
<td>14-19; 30-32</td>
</tr>
<tr>
<td>2</td>
<td>9-14; 32-34</td>
</tr>
<tr>
<td>1</td>
<td>4-8; 34-36</td>
</tr>
<tr>
<td>0</td>
<td><4; >36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8-9</td>
</tr>
<tr>
<td>4</td>
<td>7-8; 9-10</td>
</tr>
<tr>
<td>3</td>
<td>6-7; 10-11</td>
</tr>
<tr>
<td>2</td>
<td>5-6; 11-12</td>
</tr>
<tr>
<td>1</td>
<td>4-5; 12-13</td>
</tr>
<tr>
<td>0</td>
<td><4; >13</td>
</tr>
</tbody>
</table>
Spread risk in North America

- Calibration of the model - final

Climate suitability for Europe

- Temperature
- Precipitation
- Humidity

Climate suitability
Climate suitability

<table>
<thead>
<tr>
<th>Spread risk</th>
<th>Area (km²)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high</td>
<td>1,404,033</td>
<td>13</td>
</tr>
<tr>
<td>High</td>
<td>915,835</td>
<td>8</td>
</tr>
<tr>
<td>Moderate</td>
<td>2,875,609</td>
<td>26</td>
</tr>
<tr>
<td>Low</td>
<td>1,733,424</td>
<td>16</td>
</tr>
</tbody>
</table>
Discussion

- The model is "good" but it could be "better"
 - abundance data of host species is missing
 - coarse scale of variables
 - variable ranges
 - other important variables?
 - average climate: specific weather

Conclusions

- Natural spread is slow and short distance
- Long distance spread is done by humans:
 - ornamental maple species (saplings)
 - logs
- An alarming area of uninfected forests in Europe at considerable risk
- Prevent long distance spread
Thank you for your attention!
Priloga 6:
Jurč D., Ogris N., Jakša J., Jurč M. 2005: Is an attempt to eradicate
Eutypella canker of maple in Europe feasible? Predstavitev na
EPPO Conference on Phytophthora ramorum and other forest
pests, Falmouth, Cornwall, GB, 2005-10-05/07.
Is an attempt to eradicate Eutypella canker of maple in Europe feasible?

Jurč Dušan 1, Ogris Nikica 1, Jakša Jošť 2 and Jurč Maja 3

1 Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
2 Slovenia Forestry Service, Večna pot 2, 1000 Ljubljana, Slovenia
3 Department for Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Večna pot 83, 1000 Ljubljana, Slovenia

Presented at: EPPO Conference on Phytophthora ramorum and other forest pests, Falmouth, Cornwall, GB, 2005-10-05/07

With the increased volume and speed of national and international trade, the risk of invasive species increases.

Eradication of newly introduced disease is the most desirable option, but often the most difficult to approach.

Eradication of an invasive species is extremely difficult if not impossible.
Success of eradication depends on many conditions, most important are
• thorough initial assessment of the situation,
• well defined area of action,
• detailed information of methods of eradication,
• training and control methods,
• commitment and involvement of cooperating staff,
• activities to secure the resources

The report of Eutype—a canker of maple (Eutypella parasitica) in Slovenia and its probable spread raises the question of the possibility of its eradication.
Forests in Slovenia

Area: 1,142,869 ha (57% of land cover)

Wood stock: 250 m³/ha

Ownership:
70% private forests
(300,000 owners)
30% state forests

• *Acer pseudoplatanus* is the seventh most frequent tree species in Slovenia, its wood stock is 7,492,000 m³,
• *A. campestre* wood stock is 146,000 m³,
• *A. platanoides* wood stock is 121,000 m³.
One week after the determination of the disease (June 2nd 2005), Slovenian Forestry Service was informed about the find and asked for the intensive search for the disease.

Two seminars for district field foresters were conducted to recognise the disease, instruction for the immediate reporting of the finds was administrated.

After confirming the determination (PCR of type strain and isolates from Slovenia) EPPO and EU were informed about the find of Eutypella canker on July 22nd 2005.

Slovenian Forestry Service

Conatural forest management is prescribed by Forest law

Every tree to be cut is marked in the forest

780 employees

400 district field foresters
Locations of trees with Eutypella canker in Ljubljana

Priority areas for the search for Eutypella canker

- Finds of the disease from June to September 2005.
Priority areas for the search for Eutypella canker

- New finds of the disease on September 29th 2005.
In favor of the proposal for eradication are the following biological properties of the pathogen:

- The development and life cycle of the disease are substantially slower than in comparable canker diseases.
- The fungus can infect the host only through special entry points (branches, deep wounds in sapwood).
- Ascospores are distributed only over short distances from the source (i.e., old infection).

Against the attempt for the eradication are the following facts:

- The age of infections found in Slovenia is very high (more than 20-30 years). Thus, it is very likely that the actual spread is larger than previously established.
- Detection of the disease in the early phases of development is impossible in the field (the symptoms are not visible to the naked eye for as long as 5 years or more after the initial infection).
- Air distance between the two most distant infections is 92 km.
If the disease is not eradicated in Slovenia then it will without a doubt eventually spread into areas with sensitive maples within Europe. Spread will be relatively slow, but certain and continuous. It could be accelerated by trade with diseased plants (saplings) or infected wood and transported to new locations within the area at risk. In this case the disease could spread from each entry point.

If the disease is not eradicated there are options for:
- containment
- control
- or mitigation

- In any case Forestry service of Slovenia should intensify monitoring activities to establish real spread of the disease.
- Special felling teams should be established for the destroying the infected parts of the trees and for performing other sanitation measures
- Research on appropriate sanitation measures should be performed (uprooting the trees?)
• We believe that due to the vast area of the disease spread and numerous, widespread occurrence of host trees the eradication is not possible in Slovenia.
• To control the disease it is essential to establish competent state body with high administrative and execution mandate, to organize efficient realization structure and to monitor and inspect the course of the disease suppressor.

THANK YOU FOR YOUR ATTENTION
Priloga 7:
Spread risk of Eutypella canker of maple in Europe

Nikica Ogris1, Dušan Jurc2, Maja Jurc3

1Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia; nikica.ogr@gozdis.si
2Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia; dusan.jurc@gozdis.si
3Department of Forestry and renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Večna pot 83, 1000 Ljubljana, Slovenia; maja.jurc@bf.uni-lj.si

Abstract

Eutypella canker of maple, caused by the pathogen Eutypella parasitica, has been recently reported for the first time in Europe. A rule-based model of Eutypella parasitica spread risk in Europe is presented. This model incorporates the effects of spatial and temporal variability of multiple variables on pathogen spread and establishment. Model predictions are based on current knowledge of host susceptibility, pathogen reproaction, and pathogen transmission, with particular regard to the host species' distribution and climate suitability. Maps of host species' distributions and monthly weather conditions were spatially analyzed in Geographic Information System and used the magnitude and direction of each variable's effect on disease spread. Spread risk predictions were computed for each month and averaged to generate a cumulative risk map. The model was calibrated using data on the natural distribution of Eutypella canker in North America. Extensive areas covering the natural distribution of maples in Europe are at considerable risk from the Eutypella parasitica infection. The most endangered regions are broad areas of the Balkans, the Apennines, France, Central and Eastern Europe, and the Caucasus.

Keywords: Eutypella parasitica, Eutypella canker of maple, disease spread, risk modelling

1 Introduction

Eutypella canker of maple originated in North America where it was first found and described by Davidson and Lorenz (1938). The disease has been reported in states in the areas surrounding the Great Lakes: Minnesota, Wisconsin, Illinois, Indiana, Michigan, Ohio, Pennsylvania, New York State, Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont. In Canada it has been reported in Ontario and Quebec provinces.

The hosts of Eutypella parasitica in North America are maples (Acer spp.). It is most common on sugar maple (Acer saccharum Marsh.) and red maple (A. rubrum L.). It occurs infrequently on boxelder (A. negundo L.), Norway maple (A. platanoides L.), silver maple (A. saccharinum L.), black maple (A. nigrum Mich.), sycamore maple (A. pseudoplatanus L.), and striped maple (A. pensylvanicum L.) (Kliejunas & Kuntz, 1974).

Eutypella canker was found for the first time in Europe at the end of May 2005 (Jurc et al., 2005). Distinctive bark lesions in the shape of cankers were noticed on the trunks of sycamore maple on Rožnik hill in the forest in the centre of Ljubljana, the capital of Slovenia. All of the infections found were very old and three trees had already broken due to disease impact. The Slovenian forestry service has been helping to determine the range of the diseased area. After 3 months of intensive search, 56 cases of Eutypella canker were found. The air distance between the two most distant infections was 92 km. (Fig. 1). Five cankers were found on field
maple (*A. campestre*), which is a newly reported host of *Eutypella parasitica* (Ogris et al., 2005).

![Map of Slovenia](image)

Fig. 1 Current infection range of *Eutypella parasitica* in Slovenia

Eutypella canker of maple is a destructive disease of maples originally found in North America (Sinclair et al., 1989). Maples are, however, also ecologically and economically important trees in European forests. The future impact of this disease on maples in Europe is not known, but its spread risk can be predicted to a certain level of probability.

We present a rule-based model of *Eutypella parasitica* spread risk and establishment in Europe. The model incorporates the effects of spatial and temporal variability of multiple variables on pathogen spread and establishment. Model predictions are based on current knowledge of host susceptibility, pathogen reproduction, and pathogen transmission with particular regard to the host species' distribution and climate suitability. Maps of host species' distributions and monthly weather conditions were spatially analyzed in a GIS and used to calculate the magnitude and direction of each variable's effect on disease spread. Spread risk predictions were computed for each month and averaged to generate a cumulative risk map. The model was calibrated using data on the natural distribution of Eutypella canker in North America.

2 Methods

We used the model that was developed for mapping the risk of establishment and spread of sudden oak death in California as the framework for our work (Meentemeyer et al., 2004). The model was fitted to *Eutypella parasitica* characteristics and its spatial distribution.

Four predicted variables were mapped in a GIS to generate a model of *Eutypella parasitica* establishment and spread risk, based on the combined effects of spatial variation in the host species and environmental conditions. The variables include a host species index, temperature, and moisture variables.
2.1 Developing the database

2.1.1 Host species data

Two datasets of host species for *Eutypella parasitica* were built. The first dataset contained the distribution of host species in North America and the second covered those in Europe. The datasets are organized in a GIS vector format. The first step in building the datasets was to find out which host species of *E. parasitica* are present in North America and Europe. Therefore, we constructed a list of maples using the data from Krüssmann (1976), Schütt *et al.* (2001), and Potočić (1983). There are 26 maple species naturally present in North America and Europe (Table 3, Table 4).

Maps of the ranges of tree species in North America compiled by Elbert Little of the U.S. Department of Agriculture, Forest Service, and others were digitized for use in the USGS (US Geological Survey) vegetation-climate modelling studies. These digital map files are freely available for download from the internet (USGS, 1999). There are geographic ranges for 13 maple species. We decided to also include the Norway maple and sycamore maple because they are reported to be host species and are exotic, invasive tree species in North America. Their presence in North America is documented at NatureServe (2005) at the state and regional level and gives a more inaccurate distribution of data than Elbert Little.

Distribution ranges of maples in Europe were collected from different sources. Distribution maps for sycamore maple (Rusanen & Myking, 2003) and field maple (Nagy & Ducci, 2004), which were already in GIS vector format, were obtained from the EUFORGEN webpage. We scanned distribution maps from Schütt *et al.* (2001) for the distribution of *Acer platanoides*, *Acer monspessulanum*, *Acer sempervirens*, and *Acer opalus*. These images were then georeferenced and converted into ArcView® shapefile format for each maple species itself. For the remaining 7 maple species we scanned the distribution ranges from Potočić (1983) and put them through the process of georeferencing and making a GIS vector for each species separately. In the Europe datasets the quality of data was the best for the sycamore and field maple, while distribution ranges for other maple species seem to be less accurate.

2.1.2 Temperature and moisture

The climate data used in our model include monthly averages for precipitation, temperature, and relative humidity. Monthly averages for precipitation and temperature were obtained from the IIASA Climate Database (Leemans & Cramer, 1991). The IIASA Climate Database was created at the International Institute for Applied System Analyses by Rik Leemans and Wolfgang P. Cramer to represent current global climate. There are three variables included in the Database: average monthly cloudiness, precipitation, and temperature, with 12 monthly values per variable. These values were calculated from existing historical weather records with the common feature that most cover at least five years during the period between 1930 and 1960. The weather records from up to eight different sources were standardized, ranked in quality, selected, interpolated, and fitted to a one-half degree (0.5°) latitude/longitude terrestrial grid surface (grid cell size is approximately 55 ×m × 55 km); there are no values for non-land areas, since they are not important for the model.

The areas with the best data coverage are Europe, the USA, southern Canada, East Asia and Japan, while Africa and Australia have less complete coverage. High latitudes, as well as arid
and mountainous zones exhibit the least coverage, especially Siberia, northern Canada, South America, China, Mongolia, and the Tibetan Plateau. Despite certain data gaps and inconsistencies, the IIASA Climate Database is considered appropriate for use at least at regional scales and above, in various applications relating to agriculture, biogeography, ecology, geography, and especially vegetation models. Therefore, the database is suited this model's requirements.

The dataset for monthly averages of relative humidity was obtained from NCEP/NCAR reanalysis data (NOAA-CIRES Climate Diagnostics Center, 2005). The NCEP/NCAR Reanalysis project uses a state-of-the-art analysis/forecast system to perform data assimilation using data from 1948 to the present. A subset of this data has been processed to create monthly means of a subset of the original data. Grid size of each grid cell is 2.5° latitude × 2.5° longitude, which is 5 times the coarse resolution than data for the monthly means of temperature and precipitation. The coarseness of the relative humidity grid was acceptable because relative humidity does not seem to be very important to the potential of pathogen spread.

2.2 Developing the model

A rule-based model was developed to predict the risk of *Eutypella parasitica* spread in forests in Europe. Spatial models of this type use research data and expert input to determine the importance of predictor variables. In our model, each predictor variable was assigned a weight of importance, and each variable's range of values was ranked to encode the magnitude and direction of its effect on spread risk (Tables 1 and 2). The equation used to run the model is simply the sum of the product of each ranked variable and its weight of importance, divided by the sum of the weights:

\[
\bar{S} = \frac{\sum^n W_i R_j}{\sum^n W_i}
\]

where \(\bar{S}\) is the spread risk for a grid cell in the model output, \(W_i\) is the weight of the \(i\)th predictor variable, and \(R_j\) is the rank for the \(j\)th value of the \(i\)th variable, the rank of \(j\) depending on the variable's value at a given grid cell. Each variable's weight and subsequent ranks were based on field and laboratory studies of disease symptoms in a variety of host species. Particular attention was paid to differences in a host's ability to harbor and enable the spread of the pathogen, as well as the effect of environmental factors on pathogen survival, reproduction and transmission. In this model, "spread risk" is defined as a location's potential to produce inoculum and further dispersion of the disease to additional individual maples and locations. This model concentrates on "natural" forms of spread and does not take into account long distance human-mediated spread (e.g., transport of saplings or logs).

Risk predictions were computed for each month and the 12 monthly maps were then averaged to produce a cumulative spread risk at 4 risk levels.
Table 1 Weights (W) assigned to predictor variables in the *Eutypella parasitica* spread risk model, ranked 1-6 from lowest to highest importance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host species index</td>
<td>6</td>
</tr>
<tr>
<td>Precipitation</td>
<td>2</td>
</tr>
<tr>
<td>Temperature</td>
<td>2</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2 Range of values for predictor variables and assigned ranks (R) in the *Eutypella parasitica* spread risk model, ranked 0-5 from least to most suitable for spread of the pathogen

<table>
<thead>
<tr>
<th>Rank</th>
<th>Host species index</th>
<th>Precipitation (mm)</th>
<th>Temperature (°C)</th>
<th>Relative humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>24-29</td>
<td>>100</td>
<td>8-9</td>
<td>>90</td>
</tr>
<tr>
<td>4</td>
<td>18-24</td>
<td>80-100</td>
<td>7-8; 9-10</td>
<td>85-90</td>
</tr>
<tr>
<td>3</td>
<td>12-18</td>
<td>60-80</td>
<td>6-7; 10-11</td>
<td>80-85</td>
</tr>
<tr>
<td>2</td>
<td>6-12</td>
<td>40-60</td>
<td>5-6; 11-12</td>
<td>75-80</td>
</tr>
<tr>
<td>1</td>
<td>1-6</td>
<td>20-40</td>
<td>4-5; 12-13</td>
<td>70-75</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td><20</td>
<td><4; >13</td>
<td><70</td>
</tr>
</tbody>
</table>

2.2.1 Scoring the host index

Each host species is scored from 0 to 10 based on its potential to produce inoculum. In Table 3, host scores for North America are presented and in Table 4 host scores for Europe are presented. The host index is calculated in the GIS by summing each host's potential spread score in a given grid cell (Fig. 2). The range of values (0-28 for Europe and 0-29 for North America) is linearly rescaled from 0 to 5, low to high spread potential, to rank (R) variable (Table 2). The host species index variable is assigned an importance weight (W) of 6, the highest possible weight (Table 1).

Sugar maple (*Acer saccharum*) was assigned the highest potential spread score (10) among the hosts in North America because the disease was reported to be most severe in this species (Davidson & Lorenz, 1938; Kliejunas & Kuntz, 1974; French, 1969). Red maple (*Acer rubrum*) also scored very high (8) because Eutypella canker was reported to be a common cause of perennial canker in this species (Kliejunas & Kuntz, 1974). Boxelder (*Acer negundo*) scored moderately high (5) because the fungus has frequently been collected from this species and it occurs over a wide area (French, 1969). Norway maple (*Acer platanoides*) was assigned a score of 3 because Eutypella canker is commonly found on this species in landscapes but not in forests (Sinclair et al., 1989). Black maple (*Acer nigrum*) also received a score of 3 as it has Eutypella canker relatively frequently (French, 1969) Sycamore maple (*Acer pseudoplatanus*) and silver maple (*Acer saccharinum*) were assigned a very low score of 2 because there were only single reports of canker in these species in North America (French, 1969). Bigleaf maple (*Acer macrophyllum*) was assigned a score of 1 because there was only a single report of Eutypella canker in this species (French, 1969). Striped maple (*Acer pensylvanicum*) was also assigned the lowest score of 1 because there have been no reports of the pathogen in this species, although experimental inoculation has shown that it is susceptible (Sinclair et al., 1989). All other species of maple in North America were assigned a spread potential score of zero because there have been no reports showing susceptibility to the pathogen.
Host species (*Acer spp.*) naturally distributed in Europe were scored in a somewhat different manner than in North America where host species were scored according to knowledge of their susceptibility to the *Eutypella parasitica* and the known frequency of Eutypella canker distribution on these species. For North America scoring of host species was made for need of calibrating the model while for Europe scoring was made for need of disease spread modelling. Scoring of host species for Europe was made according to the following criteria: known susceptibility of host species to the pathogen in Europe, as well as the size and continuity of the natural distribution of the host species. Sycamore maple (*Acer pseudoplatanus*) was assigned the highest potential spread score among the hosts in Europe because the majority of Eutypella cankers have been found on this species (Jurc et al., 2005). Norway maple (*Acer platanoides*) was assigned a high score of 8 because its natural distribution covers a wide area and is continuous; furthermore, it is already known to be a host species to the pathogen in North America. Field maple (*Acer campestre*) received a moderate score because it has already been reported as a host species, around 10% of known Eutypella cankers in Europe are found on field maple (Ogris et al., 2005), and the geographic range of field maple covers a wide area. All other species of maple naturally present in Europe have not yet been identified as host species but we scored them from 1 to 3 according to size of their natural distribution area and their overlapping with sycamore maple, Norway maple, and field maple.

Fig. 2 Host species index; values from 1 to 28 are progressively assigned into 5 ranks
Table 3 Scores assigned to host species, ranked from 1 to 10 from lowest to highest potential to spread inoculum of *Eutypella parasitica* in its natural distribution in North America

<table>
<thead>
<tr>
<th>Host Score</th>
<th>Scientific name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Acer saccharum Marsh.</td>
<td>sugar maple</td>
</tr>
<tr>
<td>8</td>
<td>A. rubrum L.</td>
<td>red maple</td>
</tr>
<tr>
<td>5</td>
<td>A. negundo L.</td>
<td>Boxelder</td>
</tr>
<tr>
<td>3</td>
<td>A. nigrum Mich. f.</td>
<td>black maple</td>
</tr>
<tr>
<td>3</td>
<td>A. platanoides L.</td>
<td>Norway maple</td>
</tr>
<tr>
<td>2</td>
<td>A. saccharinum L.</td>
<td>silver maple</td>
</tr>
<tr>
<td>2</td>
<td>A. pseudoplatanus L.</td>
<td>Sycamore maple</td>
</tr>
<tr>
<td>1</td>
<td>A. macrophyllum Pursh</td>
<td>bigleaf maple</td>
</tr>
<tr>
<td>1</td>
<td>A. pensylvanicum L.</td>
<td>striped maple</td>
</tr>
<tr>
<td>0</td>
<td>A. spicatum Lam.</td>
<td>mountain maple</td>
</tr>
<tr>
<td>0</td>
<td>A. barbatum Michx.</td>
<td>Florida maple</td>
</tr>
<tr>
<td>0</td>
<td>A. circinatum Pursh</td>
<td>vine maple</td>
</tr>
<tr>
<td>0</td>
<td>A. glabrum Torr.</td>
<td>Rocky Mountain maple</td>
</tr>
<tr>
<td>0</td>
<td>A. grandidentatum Nutt.</td>
<td>bigtooth maple</td>
</tr>
<tr>
<td>0</td>
<td>A. leucoderme Small</td>
<td>chalk maple</td>
</tr>
</tbody>
</table>

Table 4 Scores assigned to host species, ranked from 1 to 10 from lowest to highest potential to spread inoculum of *Eutypella parasitica* in Europe

<table>
<thead>
<tr>
<th>Host Score</th>
<th>Scientific name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Acer pseudoplatanus L.</td>
<td>Sycamore maple</td>
</tr>
<tr>
<td>8</td>
<td>A. platanoides L.</td>
<td>Norway maple</td>
</tr>
<tr>
<td>5</td>
<td>A. campestre L.</td>
<td>field maple</td>
</tr>
<tr>
<td>3</td>
<td>A. monspessulanum L.</td>
<td>Montpelier maple</td>
</tr>
<tr>
<td>3</td>
<td>A. opalus Mill.</td>
<td>Italian maple</td>
</tr>
<tr>
<td>3</td>
<td>A. tataricum L.</td>
<td>Tatarian maple</td>
</tr>
<tr>
<td>2</td>
<td>A. cappadocicum Gleditsch</td>
<td>Coliseum maple</td>
</tr>
<tr>
<td>2</td>
<td>A. heldreichi Orph. ex. Boiss.</td>
<td>Heldreich's maple</td>
</tr>
<tr>
<td>2</td>
<td>A. hycanum Fisch. & Mey.</td>
<td>Balkan maple</td>
</tr>
<tr>
<td>2</td>
<td>A. neapolitanum Ten.</td>
<td>Neapolitan maple</td>
</tr>
<tr>
<td>1</td>
<td>A. lobelli Ten.</td>
<td>Lobel's maple</td>
</tr>
<tr>
<td>1</td>
<td>A. sempervirens L.</td>
<td>Cretan maple</td>
</tr>
<tr>
<td>1</td>
<td>A. velutinum Boiss.</td>
<td>Velvet maple</td>
</tr>
</tbody>
</table>

2.2.2 Scoring temperature and moisture

Ascospore discharge is greatest at temperatures between 24 and 28 °C (Johnson & Kuntz, 1979; Lachance, 1971). Laboratory tests show no ascospore discharge and dissemination at temperatures below 4 °C and higher than 36 °C. For each month, we assigned a mean monthly temperature between 24 and 28 °C with the highest rank of 5. Temperatures outside this range were assigned progressively lower ranks (Table 5). The temperature variable was given an importance weight (W) of 2 (Table 1).

Free moisture (rainfall) must also exist on mature perithecia to induce discharge of ascospores. At least 3 mm rain has to penetrate the tree canopy to initiate discharge (Johnson & Kuntz, 1979; Lachance, 1971). Spore ejection begins about 2 hours after rain has started. For each month, we assigned monthly rainfall amounts above 100 mm the highest rank of 5,
with lower ranks assigned to progressively lower rainfall amounts (Table 2; Fig. 4). High humidity alone is not sufficient to induce discharge of spores. However, high relative humidity influences the rate of drying of bark on cankers and prolongs discharge after periods of rainfall (Johnson & Kuntz, 1979). A rank of 5 was assigned to areas that experience relative humidity conditions greater than 90%, with progressively lower ranks assigned to lower humidity levels (Table 2; Fig. 5). Rainfall and relative humidity were given importance weights \(W \) of 2 and 1, respectively (Table 1). We produced a figure for climate suitability for Eutypella canker spread which illustrates the combined effects of climate averaged over 12 months, based on the weights and ranks assigned to each climate variable (Fig. 6).

Fig. 3 Temperature suitability for *Eutypella parasitica* in Europe calibrated to temperature ranges of pathogen distribution in North America

Fig. 4 Precipitation ranges in 5 ranks suited for spread of *Eutypella parasitica*
2.3 Calibrating the model

The model was calibrated in order to give more probable predictions of spread risk in Europe. The ranges of climate variables in Europe were calibrated to suit the Eutypella canker's natural distribution in North America. Initially, the ranges for the temperature variable used corresponded to laboratory experiments that tested pathogen temperature preference according to its growth speed, ascospore discharge and dissemination (Table 5). Those ranges of temperatures did not give a satisfactory result. Using the temperature ranges cited in Table
5, the model showed a very high spread risk in the more southern parts of North America, where no records of Eutypella canker have actually been reported. Therefore, we adjusted temperature ranges to the mean monthly temperatures around the Great Lakes where disease abundance is the greatest. The outcome of this process was the temperature ranges given in Table 2, which were later used in developing the spread risk model for Europe. The temperature range with the highest rank of 5 was radically lowered to 8-9 °C. Temperatures outside this range were assigned progressively lower ranks (Fig. 3). The low temperature range of rank 5 could show that inoculum dispersion may occur simply at temperatures higher than 4 °C and that it is not really very important how much higher. This hypothesis should be tested experimentally.

Calibration of the rainfall variable and relative humidity variable was not necessary because calibrating the temperature variable gave desired result. Figure 7 shows the spread risk map for North America, which was the result of running the model for North America. This figure shows that calibration of model was fairly successful because very high and high-risk ranks cover most of the area actually infected by *Eutypella parasitica*.

Table 5 Range of temperatures and assigned ranks from 0-5 from least to most suitable for spread of the pathogen according to laboratory experiments (Johnson & Kuntz, 1979)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>24-28</td>
</tr>
<tr>
<td>4</td>
<td>19-24; 28-30</td>
</tr>
<tr>
<td>3</td>
<td>14-19; 30-32</td>
</tr>
<tr>
<td>2</td>
<td>9-14; 32-34</td>
</tr>
<tr>
<td>1</td>
<td>4-9; 34-36</td>
</tr>
<tr>
<td>0</td>
<td><4; >36</td>
</tr>
</tbody>
</table>

Fig. 7 Predicted spread risk map for *Eutypella parasitica* in North America
3 Results

3.1 Spread risk

The model predicts the spatial variability of *Eutypella parasitica* establishment and spread risk, based on the combined influence of the host species index and three temperature and moisture climate variables. Risk is mapped for each month and averaged to generate a cumulative spread risk map (Fig. 8). Countries are used to report the geographic range of spread risk (Table 6). The geographic range of cumulative risk of establishment and spread are summarized below for each risk level.

3.1.1 Very high risk

13% (1,404,000 km²) of Europe's land area was mapped and found to be very high risk for *Eutypella parasitica* (Table 6; Fig. 8). The very high risk areas occur in the Balkans (Slovenia, Bosnia and Herzegovina, Serbia and Montenegro, Croatia), Southern Europe (some parts of the Apennines, the central part of the Pyrenees), Central Europe (all parts of Austria except the eastern part, the whole Czech Republic, northern and southern parts of Slovakia, central and southern part of Germany, almost all of Poland except the northeastern part), Western Europe (northern half of Switzerland, eastern part of France), and Eastern Europe (some parts of Moldova, eastern region of Ukraine, Caucasus). Very high risk regions generally cover one large contiguous area. This large contiguous area covers 1,202,000 km² (Table 7), while smaller areas cover only 9% of the total very high risk area.

Sites mapped as very high risk occur where very high host index values (Fig. 2) coincide with highly suitable climate conditions (Fig. 6). Temperature and humidity are generally more suitable for the pathogen to spread in these regions, while precipitation covers all ranges, from lowest to highest. Sycamore maple, Norway maple, and field maple generally dominate very high risk forests.
3.1.2 High risk

8% (916,000 km²) of the European land area was mapped as a high risk area (Table 6; Fig. 8). High risk areas occur in the proximity of very high risk areas. Therefore, the high risk area is like an extension of the very high risk area. High risk areas generally occur over relatively small areas (mean = 18,785 km²; Table 7) nestled within larger areas mapped as very high risk and its margins. The largest contiguous area measures 104,000 km² and crosses Bulgaria, nearly all of Macedonia, eastern Albania, and northern Greece. Another very large contiguous area of high risk encompasses 104,000 km² in Ukraine. The next larger contiguous area measure 93,000 km² and crosses the northeastern part of France, Belgium, southern Netherlands, and the northwestern part of Germany.

High risk areas occur where high and moderate host index values (Fig. 2) correspond to moderately to highly suitable climatic conditions (Fig. 6). Sycamore maple, Norway maple and field maple are generally present in high risk forests.

Table 6 Land area of each spread risk level in European countries, in square kilometres and in percent of total country area*

<table>
<thead>
<tr>
<th>Country</th>
<th>Area %</th>
<th>Very high risk</th>
<th>High risk</th>
<th>Moderate risk</th>
<th>Low risk</th>
<th>No risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>28.45</td>
<td>4,429</td>
<td>12,662</td>
<td>10,940</td>
<td>0</td>
<td>0.014</td>
</tr>
<tr>
<td>Austria</td>
<td>87.093</td>
<td>72,280</td>
<td>14,813</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Belgium</td>
<td>32.091</td>
<td>1,255</td>
<td>30,777</td>
<td>1,058</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>51.925</td>
<td>42,255</td>
<td>7,722</td>
<td>1,949</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>110.448</td>
<td>23,355</td>
<td>43,311</td>
<td>26,453</td>
<td>13,969</td>
<td>3,361</td>
</tr>
<tr>
<td>Belarus</td>
<td>228.356</td>
<td>3,562</td>
<td>18,161</td>
<td>206,233</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Croatia</td>
<td>56.409</td>
<td>32,111</td>
<td>8,427</td>
<td>11,543</td>
<td>2,031</td>
<td>2,297</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>83.423</td>
<td>83,423</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Denmark</td>
<td>48.046</td>
<td>0</td>
<td>3,316</td>
<td>40,234</td>
<td>4,496</td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>53.525</td>
<td>0</td>
<td>0</td>
<td>44,316</td>
<td>4,424</td>
<td>4,786</td>
</tr>
<tr>
<td>Finland</td>
<td>425.658</td>
<td>0</td>
<td>0</td>
<td>39,021</td>
<td>4,101</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>563.186</td>
<td>134,295</td>
<td>128,408</td>
<td>191,583</td>
<td>96,335</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>383.105</td>
<td>255,415</td>
<td>67,251</td>
<td>54,623</td>
<td>2,056</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>125.591</td>
<td>0</td>
<td>16,659</td>
<td>24,698</td>
<td>46,853</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>96.064</td>
<td>29,774</td>
<td>10,241</td>
<td>56,050</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>131.847</td>
<td>0</td>
<td>0</td>
<td>62,290</td>
<td>49,558</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>76.229</td>
<td>0</td>
<td>0</td>
<td>43,574</td>
<td>28,435</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>298.355</td>
<td>39,286</td>
<td>86,801</td>
<td>49,355</td>
<td>83,810</td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>73.620</td>
<td>0</td>
<td>0</td>
<td>71,623</td>
<td>721</td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>72.825</td>
<td>0</td>
<td>0</td>
<td>72,809</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Macedonia</td>
<td>25.11</td>
<td>2,771</td>
<td>21,177</td>
<td>1,163</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Moldova</td>
<td>34.817</td>
<td>18,454</td>
<td>14,122</td>
<td>2,261</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>38.518</td>
<td>0</td>
<td>8,121</td>
<td>16,016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>525.632</td>
<td>0</td>
<td>602</td>
<td>36,114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>337.614</td>
<td>230,775</td>
<td>51,581</td>
<td>54,208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>88.021</td>
<td>0</td>
<td>0</td>
<td>3,956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>242.374</td>
<td>71,659</td>
<td>82,194</td>
<td>75,902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>4,635.006</td>
<td>46,477</td>
<td>49,877</td>
<td>1,149,567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia and Montenegro</td>
<td>102.340</td>
<td>67,642</td>
<td>15,915</td>
<td>17,846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>51.376</td>
<td>23,010</td>
<td>26,175</td>
<td>2,150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>20.880</td>
<td>17,136</td>
<td>2,192</td>
<td>1,552</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>486.706</td>
<td>2,117</td>
<td>21,787</td>
<td>91,338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>580.577</td>
<td>0</td>
<td>0</td>
<td>126,934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>42.721</td>
<td>21,888</td>
<td>16,412</td>
<td>4,431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>628.012</td>
<td>180,210</td>
<td>169,206</td>
<td>241,537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>270.101</td>
<td>0</td>
<td>0</td>
<td>141,648</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals | 11,105.465| 1,404,033 | 915,835 | 2,875,699 | 2,733,424|

*Note: Total country area can differ considerably from actual country area (e.g., for very large countries the error can be as much as 10,000 km² high or higher with wider countries). One reason for this is coarseness of the country boundaries used in the model. Therefore, countries smaller than 10,000 km² were left out. Proportions and percentages are more important in those cases.
3.1.3 Moderate risk

26% (2,876,000 km²) of Europe’s land area was mapped as moderate risk (Table 6; Fig. 8). Moderate risk areas are generally higher in area (mean = 37,327 km²) than high risk areas (Table 7). The largest patch (1,667,000 km²) of moderate risk forest lies across a wide area of Eastern Europe (northeastern Poland, Lithuania, Latvia, Estonia, Belarus, northern and southern Ukraine, and eastern Russia). The second largest contiguous area (128,000 km²) of moderate risk encompasses the central and southwestern part of France. Third largest moderate risk area (119,000 km²) lies in southern Sweden.

Moderate risk areas occur over moderate and low host index values (Fig. 2). Climate suitability in these regions is moderate and low rank. Moderate risk areas are scattered where precipitation is moderate or of lower rank. Temperatures are less suitable for pathogen spread, and across all humidity levels. Areas of moderate risk are generally near coastlines or deep within the continent.

Table 7 Europe-wide statistics for areas mapped at the four predicted spread risk levels

<table>
<thead>
<tr>
<th>Risk</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
</tr>
<tr>
<td>Very High</td>
<td>1,201,982</td>
</tr>
<tr>
<td>High</td>
<td>103,885</td>
</tr>
<tr>
<td>Moderate</td>
<td>1,667,102</td>
</tr>
<tr>
<td>Low</td>
<td>600,046</td>
</tr>
</tbody>
</table>

3.1.4 Low risk

16% (1,733,000 km²) of Europe was mapped as low risk (Table 6; Fig. 8). Low risk areas generally cover relatively small areas (mean = 17,688 km²; Table 7) at the margins of larger areas mapped as higher risk. The regions are usually along coastlines and even deeper inside the continent than regions ranked moderate risk. Low risk regions have low and very low suitable climate rankings and low temperature ranks, while precipitation and humidity may encompass all ranges. Host index values in these regions are low and very low. Low risk regions are characterized by species that have not yet been identified as hosts, but rather as potential hosts. A very large part of low risk regions do not have host species at all. The largest contiguous area occurs in Russia. Denmark, large areas of Norway, Spain, and the United Kingdom are mapped as low risk.

4 Discussion

Eutypella parasitica is currently established in Slovenia in the surroundings of Ljubljana and in the eastern part of Slovenia (Fig. 1). The risk of continued spread and establishment of *Eutypella parasitica* in Slovenia and Europe reflects spatial variability in host vegetation and climate. The model described here matches the distribution of the disease in North America. However, the model predicts disease spread further south of the established area in North America. This result suggests either that there is a large amount of currently uninfected area in North America or that the model does not take into account some other important variable or variable range.
The data show that 41% of the very high risk area in North America is mapped outside where *Eutypella parasitica* is currently present. There are several possible reasons for this. First, the host species index was built upon the possible natural distribution of the host species (*Acer* spp.), which do not show actual state of host species present at a specific location. We are aware that there is a lack of data on the actual abundance of maples, which could change the host species index substantially and consequently the spread risk map. The model's input variables are mapped at coarse scale, although the disease can occur at a finer scale.

Not everything about Eutypella canker is known and this leaves us with only a limited understanding of the processes that may contribute to disease establishment and spread. The model presented here examines the likelihood that a site is invaded, that *Eutypella parasitica* is established, and that subsequently the site serves as a source of inoculum for further spread in the local area. A site with few, or no, hosts would have low spread risk because it is less likely to serve as a source of inoculum for further spread. However, such sites (e.g. containing a maple species that has not yet been reported as a susceptible species) may still be invaded and the pathogen established within a tree's lifetime. Long-term establishment of a *Eutypella parasitica* population requires the disease to be transmitted to at least one other susceptible individual.

There are multiple spread pathways for *Eutypella parasitica*. Natural spread is most likely over relatively short distances, about 25 m downwind from the canker (Johnson & Kuntz, 1979). It is possible that longer dispersal distances may also be achieved during rare storm events.

Humans probably have a considerable influence on the long-distance spread of *Eutypella parasitica*. Movement of ornamental trees such as red maple (*Acer rubrum*), boxelder (*Acer negundo*), and silver maple (*Acer saccharinum*) is the most likely source of long distance spread. Spread of *Eutypella parasitica* via ornamentals has most likely already occurred in Europe. Although the evidence is anecdotal, initial outbreaks of Eutypella canker have been associated with plantings of ornamental red maple in Tivoli Park, Ljubljana, Slovenia.

Infected saplings of susceptible maples are one possible pathway of disease spread. Infected logs from susceptible maples are the second most probable pathway. The fungus survives in transit as ascospores in perithecia or as mycelium in wood and bark. It can survive existing cultivation or commercial practices, because it can survive in infected wood without bark and can produce ascomata in or on wood. Fallen off infected bark and infected wood residues from manufacturing process are other possible sources of infection.

Differences in susceptibility to *Eutypella parasitica* among host populations may influence establishment and spread of the pathogen across a given landscape. If significant, population susceptibility could be mapped as a variable and used to improve model performance.

Research is also needed to determine the degree to which the spatial arrangement of host vegetation across a landscape influences disease establishment and spread. As with other dispersing organisms, small stands and isolated stands of host vegetation are less likely to be colonized successfully by *Eutypella parasitica* than larger stands or those close to other stands of host vegetation.

The climate data used in the model effectively characterizes the general moisture and temperature regimes suitable for *Eutypella parasitica*. However, the pathogen does not sporulate and spread in response to the average climate. We hypothesize that *Eutypella*
parasitica likely spreads in response to specific weather events, such as heavy rain during spring or autumn. Experiments are needed to better understand infection rates in various hosts as a function of moisture and temperature. This information could be valuable for refining the scores and weights assigned to each variable in the development of the model. This information may also be used along with spatial modelling techniques to develop a cellular automata model of disease spread through time based on statistical probabilities of dispersal and infection processes.

When new threats to plants are found or predicted a Pest Risk Analysis is usually carried out which evaluates biological or other scientific and economic evidence to determine whether a pest should be regulated. The model described here can significantly lower the degree of uncertainty of Pest Risk Analysis.

In conclusion, the model's predictions of spread risk are generally consistent with established disease areas in North America. The model identifies an alarming area of uninfected forests in Europe at considerable risk of infection by *Eutypella parasitica*. It is essential that we prevent long distance spread of the pathogen, a threat that could very much alter the forests of Europe. Although much remains to be learned about the ecology and epidemiology of the Eutypella canker, the model presented here provides a simple, yet informative tool enabling us to target threatened forests for monitoring and protection.

Acknowledgements

We would like to thank the Slovenian forestry service for help in determining the range of diseased area in Slovenia.

References

Priloga 8:
DECISION-MAKING SCHEME

Stage 1: Initiation

Identify pest

<table>
<thead>
<tr>
<th>PRA Procedure - Questions</th>
<th>Answer</th>
<th>Comments / Supporting evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the organism clearly a single taxonomic entity and can it be adequately</td>
<td>YES</td>
<td>The fungus was described in</td>
</tr>
<tr>
<td>distinguished from other entities of the same rank?</td>
<td></td>
<td>1938 and since then its nomenclature has not changed; it has no synonyms or invalid</td>
</tr>
<tr>
<td>if yes Go to 3</td>
<td></td>
<td>names.</td>
</tr>
<tr>
<td>if no Go to 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Attempt to redefine the taxonomic entity so that the criteria under 1 are</td>
<td></td>
<td></td>
</tr>
<tr>
<td>this possible?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if yes Go to 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if no Go to 22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The PRA area

| 3. Clearly define the PRA area. | | Slovenia and Europe |
| | | |

Earlier analysis

4. Does a relevant earlier PRA exist?	NO	
5. Is the earlier PRA still entirely valid, or only partly valid (out of date, applied		
in different circumstances, for a similar but distinct pest)?		
if entirely valid End		
if partly valid Go to 6		
if not valid Go to 7		

6. Proceed with the assessment, but compare as much as possible with the earlier assessment. Go to 7

STAGE 2: PEST RISK ASSESSMENT

Section A: Pest categorization (qualitative criteria of a quarantine pest)
<table>
<thead>
<tr>
<th>PRA Procedure - Questions</th>
<th>Answer</th>
<th>Comments / Supporting evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Does the pest occur in the PRA area?</td>
<td>if yes Go to 8 if no Go to 9</td>
<td>YES Europe: Slovenia, surroundings of Ljubljana</td>
</tr>
<tr>
<td>8. Is the pest of limited distribution in the PRA area?</td>
<td>if yes Go to 18 if no Go to 22</td>
<td>YES Air distance between the two most distant infections is 10.6 km</td>
</tr>
</tbody>
</table>

Potential for establishment

<p>| 9. Does at least one host plant grow to a substantial extent in the PRA area, in the open, in protected conditions or both? | if yes Go to 10 if no Go to 22 | |
| 10. Does the pest have to pass part of its life cycle on a host plant other than its major host (i.e. obligate alternate host plant)? | if yes Go to 11 if no Go to 12 | |
| 11. Does the alternate host plant also occur in the same part of the PRA area as the major host plant? | if yes Go to 12 if no Go to 22 | |
| 12. Does the pest require a vector (i.e. is vector transmission the only means of dispersal)? | if yes Go to 13 if no Go to 14 | |
| 13. Is the vector (or a similar species which is known or suspected to be a vector) present in the PRA area or likely to be introduced. If in doubt, a separate assessment of the probability of introduction of the vector (in section B1) may be needed. | if yes Go to 14 if no Go to 22 | |
| 14. Does the known geographical distribution of the pest include ecoclimatic zones comparable with those of the PRA area? | if yes Go to 18 if no Go to 15 | |</p>
<table>
<thead>
<tr>
<th>PRA Procedure - Questions</th>
<th>Answer</th>
<th>Comments / Supporting evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Is it probable, nevertheless, that the pest could survive and thrive in a wider ecoclimatic zone that could include the PRA area?</td>
<td>if yes Go to 18 if no Go to 16</td>
<td></td>
</tr>
<tr>
<td>16. Could the ecoclimatic requirements of the pest be found in protected conditions in the PRA area?</td>
<td>if yes Go to 17 if no Go to 22</td>
<td></td>
</tr>
<tr>
<td>17. Is a host plant grown in protected conditions in the PRA area?</td>
<td>if yes Go to 18 if no Go to 22</td>
<td></td>
</tr>
</tbody>
</table>

Potential economic importance

18. With specific reference to the host plant(s) which occur(s) in the PRA area, and the parts of those plants which are damaged, does the pest in its present range cause significant damage or loss?	NO	Up to the date of completion of this PRA (15. 9. 2005) the disease was found in 47 sycamore maples (*Acer pseudoplatanus* L.) and 5 field maples (*Acer campestre* L.). Thorough monitoring of the area at risk has not yet been performed fully.
19. Could the pest, nevertheless, cause significant damage or loss in the PRA area, considering ecoclimatic and other factors for damage expression?	YES	Disease development is extremely slow, many infections are probably overlooked, and the range of the disease is probably larger than originally thought.
20. Would the presence of the pest cause other negative economic impacts (social, environmental, loss of export markets)?		

21. This pest could present a risk to the PRA area

22. This pest does not qualify as a quarantine pest for the PRA area and the assessment can stop. However, if this is the first time that the decision-making scheme has directed you to this point, it may be worth returning to the question that led you here and continuing through the scheme in case the remaining questions strongly indicate categorization as a possible quarantine pest. In this latter case, seek a second opinion to decide whether the answers which led you to this point could be given a different reply.

Section B: Quantitative evaluation

1. Probability of introduction
Entry

List the pathways that the pest could be carried on.

<table>
<thead>
<tr>
<th>Entry</th>
<th>PRA Procedure - Questions</th>
<th>Answer</th>
<th>Comments / Supporting evidence</th>
</tr>
</thead>
</table>
| 1.1 | How many pathways could the pest be carried on? | 2 | Infected plants (saplings of susceptible maples) and infected logs of susceptible maples.
(few = 1; many = 9) |
| 1.2 | For each pathway, starting with the most important pathway identified above (i.e. that which carries the greatest trade or which is most likely to act as a means of introduction) and then in descending order of importance; answer questions 1.3—1.13. If one of the questions 1.3a, 1.5a, 1.7a or 1.12a is answered by 'no'; the pathway could not act as a means of entry for the pest, and the scheme will return directly to this point, omitting later questions. Use expert judgement to decide how many pathways to consider. |

Infected logs of susceptible maples

<table>
<thead>
<tr>
<th>Entry</th>
<th>PRA Procedure - Questions</th>
<th>Answer</th>
<th>Comments / Supporting evidence</th>
</tr>
</thead>
</table>
| 1.3a | Could the pest be associated with the pathway at origin? | YES | The natural range of the fungus is found in the USA (Minnesota, Wisconsin, Illinois, Indiana, Michigan, Ohio, Pennsylvania, New York State, Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, Vermont) and in Canada (Ontario, Quebec).
if yes Go to 1.3b
if no Go to 1.2 |
| 1.3b | How likely is the pest to be associated with the pathway at origin? | 2 | In the area of natural occurrence of the disease in North America an average of 5% of maples are diseased, however there are sites with up to 40% infected maples in a stand.
(not likely = 1; very likely = 9) |
| 1.4 | Is the concentration of the pest on the pathway at origin likely to be high? | 2 |
(not likely = 1; very likely = 9) |
| 1.5a | Could the pest survive existing cultivation or commercial practices? | YES | The fungus usually produces ascomata in bark, but can survive in infected wood without bark and produces ascomata in wood.
if yes Go to 1.5b
if no Go to 1.2 |
| 1.5b | How likely is the pest to survive existing cultivation or commercial practices? | 9 |
(not likely = 1; very likely = 9) |
| 1.6 | How likely is the pest to survive or remain undetected during existing phytosanitary procedures? | 7 |
(not likely = 1; very likely = 9) |
| 1.7a | Could the pest survive in transit? | YES | The fungus survives as ascospores in perithecia or as mycelium in wood and bark.
if yes Go to 1.7b
if no Go to 1.2 |
<table>
<thead>
<tr>
<th>PRA Procedure - Questions</th>
<th>Answer</th>
<th>Comments / Supporting evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7b How likely is the pest to survive in transit?</td>
<td>9</td>
<td>The fungus can release ascospores but it cannot carry out its whole life cycle.</td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 Is the pest likely to multiply during transit?</td>
<td>1</td>
<td>North America – ship – harbour in Europe (Slovenia: Port of Koper) – customs – recipient</td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
<td>(wood processing enterprise).</td>
</tr>
<tr>
<td>1.9 How large is movement along the pathway?</td>
<td>2</td>
<td>Logs are delivered to one or only a few enterprises.</td>
</tr>
<tr>
<td>(not large = 1; very large = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10 How widely is the commodity to be distributed throughout the PRA area?</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(not widely = 1; very widely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11 How widely spread in time is the arrival of different consignments?</td>
<td>9</td>
<td>We have no data on this issue.</td>
</tr>
<tr>
<td>(not widely = 1; very widely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12a Could the pest transfer from the pathway to a suitable host?</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>if yes Go to 1.12b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if no Go to 1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12b How likely is the pest to be able to transfer from the pathway to a suitable host?</td>
<td>2</td>
<td>Fallen off infected bark and infected wood residue from manufacturing process are possible</td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
<td>sources of infection.</td>
</tr>
<tr>
<td>1.13 Is the intended use of the commodity (e.g. processing, consumption, planting,</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>disposal of waste) likely to aid introduction?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2 For each pathway, starting with the most important pathway identified above (i.e. that carries the greatest trade or which is most likely to act as a means of introduction) and then in descending order of importance, answer questions 1.3 – 1.13. If one of the questions 1.3a, 1.5a, 1.7a or 1.12a is answered by 'no', the pathway could not act as a means of entry for the pest, and the scheme will return directly to this point, omitting later questions. Use expert judgement to decide how many pathways to consider.

Infected plants (saplings of susceptible maples)

Go to 1.3

<table>
<thead>
<tr>
<th>PRA Procedure - Questions</th>
<th>Answer</th>
<th>Comments / Supporting evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3a Could the pest be associated with the pathway at origin?</td>
<td>YES</td>
<td>The natural range of the fungus is found in the USA (Minnesota, Wisconsin, Illinois,</td>
</tr>
<tr>
<td>(if yes Go to 1.3b if no Go to 1.2)</td>
<td></td>
<td>Indiana, Michigan, Ohio, Pennsylvania, New York State, Connecticut, Massachusetts,</td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
<td>Maine, New Hampshire, Rhode Island, Vermont) and Canada (Ontario, Quebec).</td>
</tr>
<tr>
<td>1.3b How likely is the pest to be associated with the pathway at origin?</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRA Procedure - Questions</td>
<td>Answer</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>1.4</td>
<td>Is the concentration of the pest on the pathway at origin likely to be high?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
</tr>
<tr>
<td>1.5a</td>
<td>Could the pest survive existing cultivation or commercial practices?</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>if yes Go to 1.5b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if no Go to 1.2</td>
<td></td>
</tr>
<tr>
<td>1.5b</td>
<td>How likely is the pest to survive existing cultivation or commercial practices?</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>How likely is the pest to survive or remain undetected during existing phytosanitary</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>procedures?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
</tr>
<tr>
<td>1.7a</td>
<td>Could the pest survive in transit?</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>if yes Go to 1.7b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if no Go to 1.2</td>
<td></td>
</tr>
<tr>
<td>1.7b</td>
<td>How likely is the pest to survive in transit?</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>Is the pest likely to multiply during transit?</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(not large = 1; very large = 9)</td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>How widely is the commodity to be distributed throughout the PRA area?</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(not widely = 1; very widely = 9)</td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>How widely spread in time is the arrival of different consignments?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(not widely = 1; very widely = 9)</td>
<td></td>
</tr>
<tr>
<td>1.12a</td>
<td>Could the pest transfer from the pathway to a suitable host?</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>if yes Go to 1.12b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if no Go to 1.2</td>
<td></td>
</tr>
<tr>
<td>1.12b</td>
<td>How likely is the pest to be able to transfer from the pathway to a suitable host?</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
</tr>
<tr>
<td>PRA Procedure - Questions</td>
<td>Answer</td>
<td>Comments / Supporting evidence</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1.13 Is the intended use of the commodity (e.g. processing, consumption, planting, disposal of waste) likely to aid introduction? (not likely = 1; very likely = 9)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Establishment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14 How many host-plant species are present in the PRA area? (one or very few = 1; many = 9)</td>
<td>3</td>
<td>Acer pseudoplatanus, A. platanoides, A. campestre; the susceptibility of other autochthonous species of maples (Acer spp.) in Europe is not known. Other susceptible species of maples from North America (A. saccharum Marsh., A. ribrum L., A. negundo L., A. saccharinum L., A. nigrum Mich., A. pennsylvanicum L.) are planted in the PRA area as ornamental tree species.</td>
</tr>
<tr>
<td>1.15 How extensive are the host plants in the PRA area? (rare = 1; widespread = 9)</td>
<td>8</td>
<td>Natural areal of maples in Europe comprises the majority of the continent, Acer pseudoplatanus is the seventh most frequent tree species in Slovenia, its wood stock is 7,492,000 000 m³, A. campestre wood stock is 146,000 m³, A. platanoides wood stock is 121,000 m³.</td>
</tr>
<tr>
<td>1.16 If an alternate host is needed to complete the life cycle, how extensive are such host plants in the PRA area?</td>
<td></td>
<td>The fungus has no alternate host.</td>
</tr>
<tr>
<td>1.17 *If a vector is needed for dispersal, how likely is the pest to become associated with a suitable vector? (not likely = 1; very likely = 9)</td>
<td></td>
<td>The fungus has no vector.</td>
</tr>
<tr>
<td>1.18 (Answer this question only if protected cultivation is important in the PRA area.) Has the pest been recorded on crops in protected conditions elsewhere? (no = 1; often = 9)</td>
<td></td>
<td>We have no data on this issue.</td>
</tr>
<tr>
<td>1.19 How likely are wild plants (i.e. plants not under cultivation, including weeds, volunteer plants, feral plants) to be significant in dispersal or maintenance of populations? (not likely = 1; very likely = 9)</td>
<td>9</td>
<td>The majority of maples are wild, relatively small numbers are planted as ornamentals.</td>
</tr>
</tbody>
</table>

1 Questions marked with an asterisk are to be considered as more important than the others in the same section.
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Comments / Supporting evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20 How similar are the climatic conditions that would affect pest establishment in the PRA area and in the area of origin?</td>
<td>9</td>
<td>The temperature and moisture conditions over most of the European range of maples are suitable for growth and reproduction of the fungus.</td>
</tr>
<tr>
<td>(not similar = 1; very similar = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.21 How similar are other abiotic factors in the PRA area and in the area of origin?</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>(not similar = 1; very similar = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.22 How likely is the pest to have competition from existing species in the PRA area for its ecological niche?</td>
<td>9</td>
<td>After infection of the host the fungus is the sole inhabitant of the wound, in later phases of the disease, when an open wound is produced, other fungi can also inhabit the wound but these do not have a negative influence on the pathogen.</td>
</tr>
<tr>
<td>(very likely = 1; not likely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.23 How likely is establishment to be prevented by natural enemies already present in the PRA area?</td>
<td>9</td>
<td>The fungus has no natural enemies in the PRA area.</td>
</tr>
<tr>
<td>(very likely = 1; not likely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.24 If there are differences in the crop environment in the PRA area to that in the area of origin, are they likely to aid establishment?</td>
<td>9</td>
<td>None that are known to us.</td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25 Are the control measures which are already used against other pests during the growing of the crop likely to prevent establishment of the pest?</td>
<td>7</td>
<td>Thinnings and sanitary fellings of diseased trees are performed during regular silviculture and tending procedures in forests. The intensity of these measures is in our opinion too low to control the disease.</td>
</tr>
<tr>
<td>(very likely = 1; not likely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26 Is the reproductive strategy of the pest and duration of life cycle likely to aid establishment?</td>
<td>2</td>
<td>The reproductive cycle of the fungus is relatively lengthy and prevents its rapid establishment over an extensive area.</td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.27 How likely are relatively low populations of the pest to become established?</td>
<td>9</td>
<td>The fungus produce spores in great numbers in a single infected host throughout the entire vegetative period and for up to decades.</td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.28 How probable is it that the pest could be eradicated from the PRA area?</td>
<td>6</td>
<td>We estimate the probability of eradication at more than 50% if the right measures are implemented in a comprehensive, accurate, and competent manner.</td>
</tr>
<tr>
<td>(very likely = 1; not likely = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.29 How genetically adaptable is the pest?</td>
<td>3</td>
<td>Adaptability and specialization of the fungus to particular hosts was not investigated, but inoculations of red maple (Acer rubrum) have shown that some specialization of the fungus exists. Isolates of the fungus from sugar maple (A. saccharum) have only rarely been capable of producing infection in wounds on red maple (Lachance and Kuntz 1966)</td>
</tr>
<tr>
<td>(not adaptable = 1; very adaptable = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30 How often has the pest been introduced into new areas outside its original range?</td>
<td>1</td>
<td>Introduction has probably occurred only once.</td>
</tr>
<tr>
<td>(never = 1; often = 9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Economic Impact Assessment

<table>
<thead>
<tr>
<th>PRA Procedure - Questions</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 How important is economic loss caused by the pest within its existing geographic range?</td>
<td>In the area of natural occurrence of the disease in North America an average of 5% of maples are diseased, however there are sites with up to 40% infected maples in a stand. Infected maples have 50% less marketable wood than healthy maples.</td>
</tr>
<tr>
<td>(little importance = 1; very important = 9)</td>
<td></td>
</tr>
<tr>
<td>2.2 How important is environmental damage caused by the pest within its existing geographic range?</td>
<td>Maples with advanced cankers are prone to windbreak.</td>
</tr>
<tr>
<td>(little importance = 1; very important = 9)</td>
<td></td>
</tr>
<tr>
<td>2.3 How important is social damage caused by the pest within its existing geographic range?</td>
<td>Infected trees have reduced aesthetic value in urban environments and in forests.</td>
</tr>
<tr>
<td>(little importance = 1; very important = 9)</td>
<td></td>
</tr>
<tr>
<td>2.4 How extensive is the part of the PRA area likely to suffer damage from the pest?</td>
<td>Probably all areas containing maples in Europe. 18% of the PRA area has a high probability, 57% of the PRA area has a lower probability.</td>
</tr>
<tr>
<td>(very limited = 1, whole PRA area = 9)</td>
<td></td>
</tr>
<tr>
<td>2.5 How rapidly is the pest liable to spread in the PRA area by natural means?</td>
<td>The actual diseased area is small in spite of long establishment of the disease.</td>
</tr>
<tr>
<td>(very slowly = 1; very rapidly = 9)</td>
<td></td>
</tr>
<tr>
<td>2.6 How rapidly is the pest liable to spread in the PRA area by human assistance?</td>
<td>The spread of infected saplings and infected maple logs with bark from a diseased area is likely.</td>
</tr>
<tr>
<td>(very slowly = 1; very rapidly = 9)</td>
<td></td>
</tr>
<tr>
<td>2.7 How likely is it that the spread of the pest could be contained within the PRA area?</td>
<td>Characteristics of fungal biology (slow development, slow spread, special requirements for infection of the host) are in favour of its slow spread and our ability to eradicate it.</td>
</tr>
<tr>
<td>(very likely = 1; not likely = 9)</td>
<td></td>
</tr>
<tr>
<td>2.8 Considering the ecological conditions in the PRA area, how serious is the direct effect of the pest on crop yield and/or quality likely to be?</td>
<td>Eutypella canker of maple destroys 50% of the marketable wood volume of diseased trees.</td>
</tr>
<tr>
<td>(not serious = 1; very serious = 9)</td>
<td></td>
</tr>
<tr>
<td>2.9 How likely is the pest to have a significant effect on producer profits due to changes in production costs, yields, etc., in the PRA area?</td>
<td>If we assume that the average disease incidence for the PRA area is 5% (the same as it is in Eutypella canker's natural range in North America) and if we take into account that the loss of marketable wood from diseased maples is 50%, then the predicted loss in the PRA area is 2.5% less maple wood. There will be minimal higher production costs.</td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
</tr>
<tr>
<td>2.10 How likely is the pest to have a significant effect on consumer demand in the PRA area?</td>
<td></td>
</tr>
<tr>
<td>(not likely = 1; very likely = 9)</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>2.11 How likely is the presence of the pest in the PRA area to affect export markets? (not likely = 1; very likely = 9)</td>
<td>3</td>
</tr>
<tr>
<td>2.12 How important would other costs resulting from introduction be? (little importance = 1; very important = 9)</td>
<td>3</td>
</tr>
<tr>
<td>2.13 How important is the environmental damage likely to be in the PRA area? (little importance = 1; very important = 9)</td>
<td>4</td>
</tr>
<tr>
<td>2.14 How important is the social damage likely to be in the PRA area? (little importance = 1; very important = 9)</td>
<td>2</td>
</tr>
<tr>
<td>2.15 How probable is it that natural enemies, already present in the PRA area, will affect populations of the pest if introduced? (very likely = 1; not likely = 9)</td>
<td>8</td>
</tr>
<tr>
<td>2.16 How easily can the pest be controlled? (easily = 1; with difficulty = 9)</td>
<td>5</td>
</tr>
<tr>
<td>2.17 How likely are control measures to disrupt existing biological or integrated systems for control of other pests? (not likely = 1; very likely = 9)</td>
<td>1</td>
</tr>
<tr>
<td>2.18 How likely are control measures to have other undesirable side-effects (for example on human health or the environment)? (not likely = 1; very likely = 9)</td>
<td>2</td>
</tr>
<tr>
<td>2.19 Is the pest likely to develop resistance to plant protection products? (not likely = 1; very likely = 9)</td>
<td>Not important.</td>
</tr>
</tbody>
</table>
3 Final Evaluation

Comments:
Eradication of Eutypella canker of maple in Slovenia is proposed.

In favor of this proposal are the following biological properties of the pathogen:
- The development and life cycle of the disease are substantially slower than in comparable canker diseases
- The fungus can infect the host only through special entry points (branches, deep wounds in sapwood)
- Ascospores are distributed only over short distances from the source (i.e. old infection)

Against the attempt for the eradication are the following facts:
- The age of infections found in Slovenia is very high (more than 20-30 years). The exact age will be determined by dissection of older canker wounds in the future. Thus, it is very likely that the actual spread is larger than previously established.
- Detection of the disease in the early phases of development is impossible in the field (the symptoms are not visible to the naked eye for as long as 5 years after the initial infection)

If the disease is not eradicated in Slovenia then it will without a doubt eventually spread into areas with sensitive maples within Europe. Spread will be relatively slow, but certain and continuous. It could be accelerated by trade with diseased plants (saplings) or infected wood and transported to new locations within the PRA area. In this case the disease could spread through any entry point.

Taking into consideration all arguments for and against the eradication of Eutypella canker in Slovenia we conclude that the expected ecological and economic damages due to this disease are such that suitable efforts and funds should be invested in its total eradication from Slovenia and Europe.
Priloga 9:
Nikica Ogriš, Dušan Jurc

Ugotavljanje razširjenosti javorovega raka v Sloveniji - nadaljevanje

Metode dela

Predstavljeno na Seminarju za popis razširjenosti javorovega raka v Sloveniji, Ljubljana - Tivoli. 27.9.2005

Namenska dela

• Brez podatka o razširjenosti bolezni se ne moremo odločiti, kako bomo ukrepali
• Če bo razširjenost majhna in omejena na posameznega žarišča, bomo morda bolezen lahko izkoreninili oz. močno omejili
• Če bo razširjenost velika, morda po celi Sloveniji, bolezni ne bomo mogli izkoreniniti, ampak bomo le zmanjševali njeno škodljivost s smiselnimi ukrepi
Delo revirnega gozdarja

- Vsebina pregleda:
 - pregled vseh vrst javorov: gorski javor, maklen, ostrolistni javor, trokrpi javor, topokrpi, tatarski, okrasni (rdeči, ameriški, srebrni, japonski, pahljačasti)
 - najprej območja, kjer je javorja največ (po LZ ali številu osebkov)
 - Na kartah Prioritetna območja I in Prioritetna območja II je nakazano, kje je največja verjetnost novih nahajališč javorovega raka

Razširjenost

- Slovenija (stanje na 15.9.2005)
Prioritetna območja I — v območju 1 in 2 je javorov rak že najden, v 3 še ne

Prioritetna območja II — v 1. območju je javorov rak že najden, v 2. in 3. še ne, zato mora biti intenzivnost pregledov v območjih 2 in 3 največja!
Način poročanja

- Vsaka sumljiva okužba javorja se označi s trakom ali barvo, tako, da je drevo mogoče ponovno najti
- Kraj sumljive okužbe se vriše v karto
- Podatek se vpiše v XLS preglednico
- Naslov:
 \Zgs\ftp\OE00ZGS\Oddelek III\PDP\javorov_rak

<table>
<thead>
<tr>
<th>GGO</th>
<th>ODSEK</th>
<th>GE</th>
<th>REVIR</th>
<th>DATUM</th>
<th>DV</th>
<th>ŠT. PREGLEDANIH</th>
<th>ŠT. OKUŽENIH starost 1</th>
<th>ŠT. OKUŽENIH starost 2</th>
<th>ŠT. OKUŽENIH starost 3</th>
</tr>
</thead>
</table>

Gozdarski inštitut Slovenije
Slovenian Forestry Institute

Način poročanja

- Starost okužbe
 - 1. mlada okužba
trosišča prisotna,
skorja ne odpada

Gozdarski inštitut Slovenije
Slovenian Forestry Institute
Način poročanja

• Starost okužbe
 – 2. razvita okužba

 skorja v sredini raka
 odpada, na robih so
 trosišča, deformacija
 debla

Način poročanja

• Starost okužbe
 – 3. stara okužba

 skorja je že odpadla
 na večjem delu raka,
 rak je objel že skoraj
 cel obod

Gozdarski inštitut Slovenije
Slovenian Forestry Institute
Simptomi

- Večina okužb je na deblu do višine 3,7 m

Simptomi

- Gliva na leto prirašča le en ali dva centimetro po višini raka, po širini še manj
Simptomi

- Zaradi dolgotrajne okuženosti in skupne rasti glive in drevesa je deblo običajno zakrivljeno, deformirano

Simptomi

- Raki so zelo pravilen, ovalne oblike
Simptomi

- Črna trošišča. deformacija debla, rahlo odebelen rob rakave rane

Simptomi

- Zelo neopazne so mlade okužbe.
- Na sredini okužbe je običajno odmrčla veja.
- Če je rak star več kot 5 let so na odmrli skorji črna trošišča glive
- Skorja je rahlo ugreznjena
Simptomi

- Stari raki lažko obsegajo večino oboda debla

Simptomi

- Mlada, težko opazna okužba - na robu rakave rane so temnejši predeli, kjer se po dežju izceja črna tekočina
- Na najstarejšem delu rane se oblijujejo črna trosišča
Simptomi

- Stare rakave rane so opazne že od daleč
- V les so se naselile glive, ki razgrajajo les in lahko oblikujejo na njem trosnjake – kožaste, luknjičaste, rjave, bele i.d.

Simptomi

- Javorov rak v Ameriki na sladkornem javoru
- Za razliko od okužb na gorskem javoru so ti raki zverženi in rob deformiran, ker je gliva na zunanjih delih raka odmrla in drevo nepravilno zarašča rano
Simptomi

- Trosišča na skorji

Simptomi

- Trosišča na lesu

Simptomi

- periteciji

Simptomi

- Ležeče, odlomljeno deblo, na njem številna črna trosišča glive
- Deblo se je prelomilo na rakavem mestu
Simptomi

- Micelijske pahljačice se na robu rane razraščajo v eni plasti skorje, na starejših delih raka pa lahko v več plasteh in tudi v odmrli kambialni plasti

Simptomi

- na maklenu

ker je skorja na maklenu bolj hrapava, je rak manj opazen

rak na maklenu težje opazimo, zato pregled maklena opravljamo natančneje!
Simptomi

- na maklenu
tudi pravilne ovalne oblike

Simptomi

- na maklenu
ker je maklen tudi zdrav pogosto zavit in deformiran, sama deformacija debla ni zadosti za pozitivno določitev glive
Simptomi

- deblo lahko porašča mah, kar še dodatno otežuje zaznavanje raka

Simptomi

- micelijske pahljačice na maklenu
Priloga 10:
Information about the potential quarantine harmful organism

Eutypella parasitica

Eutypella canker of maple

IDENTITY

Name: *Eutypella parasitica* R.W. Davidson & R.C. Lorenz (Davidson and Lorenz 1938)

Synonyms: None

Taxonomy: *Diatrypaceae, Diatrypales, Sordariomycetidae, Ascomycetes, Ascomycota, Fungi* (Kirk et al. 2001)

General Name:
- Slovenian name: javorov rak
- English name: Eutypella canker of maple, Eutypella canker

Bayer code: not classified

EPPO A2 list: not classified

EU classification: not classified

HOSTS

In the natural areal of fungus in North America, the hosts of Eutypella canker are maples (*Acer* spp.). It is most common on sugar maple (*Acer saccharum* Marsh.) and red maple (*A. rubrum* L.). It occurs infrequently on boxelder (*A. negundo* L.), Norway maple (*A. platanoides* L.), silver maple (*A. saccharinum* L.), black maple (*A. nigrum* Mich.), sycamore maple (*A. pseudoplatanus* L.), and striped maple (*A. pennsylvanicum* L.) (Kliejunas and Kuntz 1974). The report of a finding on *Prunus pennsylvanica* L. in Quebec is not reliable (Sinclair et al. 1989).

In Europe, the fungus has been found on sycamore maple (*Acer pseudoplatanus* L.) and field maple (*Acer campestre* L.).

GEOGRAPHICAL DISTRIBUTION

EPPO region:
- Slovenia

North America:
- Canada (Ontario, Quebec)

E.U.:
- Slovenia

BIOLOGY

The fungus is a xerophyte and ascomata are inactive under dry conditions. When there are at least 2.5 cm of rainfall and the temperature is above 4 °C, it takes approximately two hours for ascospores to be produced in the perithecia, which are then dispersed.
mostly in groups of eight and spread by the wind as a unit (Lachance 1971b, Johnson and Kuntz 1979). The spread of ascospores in stands is relatively poor due to the weight of eight ascospores and to the absence of convection winds in rainy weather, when there are the most favorable conditions for the formation of spores. The greatest number of spores spread in stands at a height of 1.2 m and about 25 m from the source of the spores their number is very small (Johnson and Kuntz 1979). These characteristics for the spreading of spores are likely the reason that more than 91% of infections begin below 3.7 m above the ground and that the infections within a stand are grouped around an infectious center, i.e. an old Eutypella canker (Kliejunas and Kuntz 1974). The fungus infects trees only through exposed wood tissue, which is usually a dead branch with a diameter of up to 5 cm thick or a wound on the trunk that has not healed quickly (Lachance 1971a). The mycelium spreads from the stump of the branch to the trunk and creates a perennial canker on the trunk, which can then grow for decades along with the tree. One symptom of the disease is the slow increase in an elongated oval canker wound, which does not lose its bark due to the thick hyphal overgrowth in the bark that fixes it onto the wood. The canker grows in height on average 1-2 cm per year, but usually less so in width (Sinclair et al. 1989). The fungus spreads into the bark and wood such that it kills the cells in front of the growing hyphae. Five to eight years after the bark dies off, perithecia begin to form in the poorly developed stroma in the bark. At the beginning, the stroma give rise to perithecia in groups that are only a few millimeters wide, but later perithecial necks cover the entire surface of the central part of the canker. Perithecia continually arise in the stroma and, as the old ones die, young ones are formed (Lachance and Kuntz 1970). Therefore spores can always be released when the temperature and moisture conditions are favorable. In certain hosts, conidiomes of the fungus classified in the genera Libertella and Cytosporina will also usually develop in the stroma and between the perithecia. Conidiogenous cells also produce conidia in two ways. Conidia are not germinable and therefore are not important for spreading the disease (Kliejunas and Kuntz 1972, Glawe 1983). The fungus overgrow the wood underneath the infected part of the bark and cause brown wood rot. Decay is slow, although due to the long duration of the infection the tree often breaks at the infected area. In the central part of the trunk, the fungus grows out of the canker area and colors the wood to within 30-40 cm from the edge of the canker (Gross 1984, Sinclair et al. 1989). When the infected trunk lies on the ground, perithecia will develop over the most of the surface of the bark and will produce spores for at least more two years (Johnson and Kuntz 1976).

The fungus in the bark and wood competes well against other organisms; therefore it is easy to isolate it in a pure culture (Davidson and Lorenz 1938). Mycelium in culture is white, cottony, and thick; it also grow quickly, approximately 0.5 cm in radius per day. After five to six weeks, round conidiomata, similar to sporodochium and measuring around 0.75 mm or less, form on the mycelium and are covered with a yellow mass of conidia (Glawe 1983).

DETECTION AND IDENTIFICATION

Symptoms

The infected bark dies off and sinks in slightly, the color of the dead bark becomes darker, usually slightly brownish, and at the edge of the necrosis there is a poorly defined callous swelling. Due to the slow progress of the fungus in the bark the
infection is hardly noticeable for the first few years (Figure 1). The necrosis grows together with the growth of the tree and becomes a typical canker. After 5 to 8 years, perithecia start to form in the central part of the canker in the poorly defined stromata. On the surface of the bark there are dark regions with black stromata and the black perithecial necks, which are a few millimeters long and grow out of the bark or stroma (Figure 2).
In some hosts (e.g. *Acer saccharum*), the edge of the canker is often deformed, because the fungus dies off in certain regions of the bark and forms an extensive calloused edge that closes the wound irregularly. In sugar (*A. saccharum*) and red maple (*A. rubrum*), the canker has a strongly elliptical or oblong shape. In sycamore maple (*A. pseudoplatanus*), boxelder (*A. negundo*), and Norway maple (*A. platanoides*), the callous is usually in the form of a regular ellipse, although it can occasionally be an almost perfect circle, without a deformed edge (Sinclair *et al.* 1989).
Stromata with back perithecia or black perithecial necks alone can cover an considerable area of the canker, they are sometimes arranged in a concentric pattern and each circle represents the yearly growth of the fungus in the bark (Figure 3). An important difference between *Eutypella parasitica* and other canker diseases is that the bark which has died off remains fixed to the canker wound for a very long time. First, the bark begins to fall off at the oldest part at the center of the canker, and by that point the trunk is already partially deformed or ridged. Old *Eutypella* cankers completely deform the trunk (Figure 4) and various fungi can then invade the exposed wood causing wood decay and their sporophores can form on the open canker wound. A characteristic sign of infection with *E. parasitica* is an extensive hyphal growth in the bark of the canker wound, particularly at its edge, which forms small thin mycelial fans with a white to slightly cream color (Figure 5). These fans begin to develop in the infected bark two years after the infection has taken hold (Lachance and Kuntz 1966). There is usually one canker per tree, which is generally located in the lower part of the trunk. Stromata with perithecia can also form in or on infected wood without bark, but this is rare (Figure 6) (Kliejunas and Kuntz 1974, Davidson and Lorenz 1938).
Figure 5: Mycelial fans in the bark are white to cream colored.

Figure 6: Stromata with perithecia can also form on wood.

Morphology

Perithecia have a radius of 0.6-1.0 mm and their necks are up to 5 mm long; their length is dependent on the depth of formation of perithecia in the bark (Figure 7). Conidia are produced in the bark in variable conidiomes, which can be designated as pycnidium or acervulus by morphology. Conidia are hyaline, bent into a U shape, pointed at the ends, and measure 17-32 × 1.2-1.8 μm (Figure 8). Asci are small with an elongated bottom part (stipe), which measures 10-40 × 1.5 μm, and a widened upper part with ascospores, which measures 32-40 × 6-7 μm. Ascospores are irregular, uni-, bi- or more seriate, one-celled, brown, slightly bent, and measure 8-11×2-2.3 μm (Figure 9) (Davidson and Lorenz 1938, Sinclair et al. 1989).
Figure 7. Perithecia and stroma (bar = 0.5 mm)

Figure 8. Conidia (bar = 20 μm)

Figure 9. Asc. with ascospores (bar = 20 μm)
Detection and inspection methods

An old infection with *E. parasitica* is easy to determine, because there are usually many characteristic signs of Eutypella canker present. The host plant is always maple (*Acer* sp.). The infection is in the form of a regular ellipse or the edge is deformed and the trunk is usually deformed as well. In bark infected with the *Eutypella* canker, mycelium is clearly visible in the form of small fans with a white to cream color particularly at the canker's edge near the healthy bark (the bark is removed with a sharp knife). After five or more years, black perithecial necks grow out of the dead bark; slightly raised black fungal stromata can develop later. These stromata are about 1 cm in diameter, and have shallow crevasses in between. Perithecia do not form in infections less than 5 years old. At that time the *Eutypella* canker is a flat to slightly sunken elliptical part of the bark, the color has changed and it is almost without a callous edge. Fan-like mycelia are found in the bark and range in color from white to cream.

There are no fan-like mycelia in the bark in infections less than two years old; therefore the presence of fungus young infections can only be proven by isolating the pathogen in a pure culture.

MEANS OF MOVEMENT AND DISPERAL

The release of ascospores into the air is triggered by precipitation and temperatures above 4 °C and can occur at any time of the year. The wind usually carries the ascospores a short distance, although they can live a very long time in dry form and can even germinate up to 20 months after drying out (Lachance 1971, Johnson and Kuntz 1979).

The most likely transfer of the fungus occurs through international trade in infected saplings and in infected raw lumber. It is not known whether the fungus forms perithecia on infected wood under suitable conditions.

PEST SIGNIFICANCE

Economic impact

Eutypella canker can lower the production of quality logs of maples since it is found most often below 3.7 m, which represents the most valuable part of tree (Kliejunas and Kuntz 1974). The decomposition of the wood in a tree with Eutypella canker can also spread to the interior of the trunk. Internal damage is usually less than 0.4 m from the outer edge of the canker (Gross 1984e).

The disease often causes death in understory trees with a trunk diameter less than 7.5 cm, whereas larger trees often break at the site of the canker when there are high winds, heavy snow or sleet (French 1969, Kliejunas and Kuntz 1974). Eutypella canker is generally found on few maples (under 5 %), although it can reach up to 40% of all maples in certain stands (Gross 1984b). In the Owen Sound region of Ontario, Eutypella canker was found in 7 % of sugar maples. An infected tree loses an average of 12 % total volume and 49 % of its sale volume (*ibid*), which means a loss of about half of its value when sold on the market.

In Slovenia, the Eutypella canker would most likely effect sycamore maple, which represents 2.4 % (7,492,000 m³) of wood stock in Slovenia and is the 7th most important Slovenian tree species, the Norway maple, which has a wood stock of 121,000 m³, and the field maple, which has a wood stock of 146,000 m³ (Brus 2004). In as much as the disease can also infect other susceptible species of maple, it can
change stands of trees where *A. obtusatum* (wood stock: 43,000 m3) and the ecologically important Montpelier maple (*A. monspellanum* L.) and Tatarian maple (*A. tataricum* L.) are a part.

Environmental influence

Maples are an important component of forests in Europe and are found as autochthons throughout almost all of Europe (Figure 10). Maples autochthonous to Europe are: sycamore maple (*A. pseudoplatanus*), Norway maple (*A. platanoides*), field maple (*A. campestris*), Montpelier maple (*A. monspellanum*), *A. obtusatum*, tatarian maple (*A. tataricum*), and others. In addition to autochthonous maples, other maples such as Silver maple (*A. saccharinum*), boxelder (*A. negundo*), Amur maple (*A. ginnala*), Fullmoon maple (*A. japonicum*), Japanese maple (*A. palmatum*), and others (Brus 2004) are found in Europe in parks, around homes, and in other green areas in urban environments.

![Figure 10: Map of range of maples (Pirc 1994)](image)

Trees with Eutypella canker are less mechanically stable and therefore are more prone to windbreak, which can make whole stands of maples less stable. Eutypella canker strongly deforms the aesthetic look of maples, which are important component of parks and other parts of the urban environment.

Control

Removing infected parts of the trunk from the stand is recommended in order to control the disease (Johnson and Kuntz 1976, Kliejunas and Kuntz 1974). Removing branches from trees to a height of three meters is recommend for preventing infection in young trees (Kliejunas and Kuntz 1974). In infected decorative trees, cutting out the bark around the entire edge of the canker is recommended and may halt the spread of the fungus (Blanchard and Tattar 1981). However, this proposal is in opposition to
the finding that the fungus can grow from dead into living tissue and the success of this method has not been proved (Sinclair et al. 1989). Poisoning the tree with Na-arsenite destroys the fungus on the edge of the canker, but does not prevent the formation of ascomata and ascospores (Johnson and Kuntz 1976).

Phytosanitary risk

Eutypella parasitica is dangerous for the sycamore maple (_Acer pseudoplatanus_), Norway maple (_A. platanoides_), and field maple (_A. campestre_) over their entire areal in Europe, as well as for maples in parks, along avenues, and around houses, particularly for the species from North America: _A. saccharum_, _A. rubrum_, _A. negundo_, _A. saccharinum_ and _A. nigrum_.

The susceptibility of other autogenous species in Europe (e.g. _A. monspessulanum_, _A. obtusatum_, _A. tataricum_, etc.) and other decorative species of maple (mostly Asian) is not known.

PHYTOSANITARY MEASURES

Preventing trade in infected saplings and in raw lumber from infected areas is necessary. Trade in infected debarked lumber and infected cut wood probably has a lower risk of spreading the disease.

ACKNOWLEDGEMENTS

The data were prepared by:

Dr. Dušan Jurc and Nikica Ogris, Gozdarski inštitut Slovenije (Slovenian Forestry Institute), Ljubljana, Slovenia

BIBLIOGRAPHY

Priloga 11:
Podatki o potencialnem karantenskem škodljivem organizmu

Eutypella parasitica

javorov rak

ISTOVETNOST

Ime: *Eutypella parasitica* R.W. Davidson & R.C. Lorenz (Davidson in Lorenz 1938)

Sinonimi: jih ni

Taksonomska uvrstitev: *Diatrypaceae, Diatypales, Sordariomycetidae, Ascomycetes, Ascomycota, Fungi* (Kirk et al. 2001)

Splošno ime: Slovensko ime: javorov rak
Angleško ime: Eutypella canker of maple, Eutypella canker

Bayer koda:

EPPO A2 lista: ni uvrščena
EU uvrstitev: ni uvrščena

GOSTITELJSKE RASTLINE

RAZŠIRJENOST

EPPO regija: Slovenija
Severna Amerika: ZDA (Minnescta, Wisconsin, Illinois, Indiana, Michigan, Ohio, Pennsylvania, New York State, Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, Vermont)

E.U.: Kanada (Ontario, Quebec)

Slovenija

BIOLOGIJA

Gliva je kserofit in trošiča so neaktivna v sušnih razmerah. Ko pade najmanj 2,5 mm dežja in je temperatura nad -4 °C pa v približno dveh urah prične iz peritecijev izmetavati po osem askospor skupaj in veter jih prenaša kot enoto (Lachance 1971b, Johnson in Kuntz 1979). Razširjanje askospor v sestoji je relativno slabo zaradi teže 8 askospor in zaradi odsotnosti konvektičskih vetrov ob deževnem vremenu, ko so najugodnejše razmere za oblikovanje trosov. Največ trosov se širi v sestoji na višini 1,2 m, na razdalji 25 m od vira trosov pa je njihovo število zelo majhno (Johnson in

Gliva v skorji in lesu dobro konkurira drugim organizmom, zato jo brez težav izoliramo v čisto kulturo (Davidson in Lorenz 1938). Podgobje v kulturi je belo, vatasto in gosto, raste hitro (približno 0,5 cm v polmeru na dan). Po petih do šestih tednih se na njem oblikujejo sporodohi podobni okrogl konidiomi, prekriti z rumeno maso konidijevo, veliki 0,75 mm ali manj (Glawe 1983).

DETEKCIJA IN IDENTIFIKACIJA

Simptomi

Okužena skorja odmre, se rahlo ugrezne, barva odmrla skorje postane temnejša, rahlo porjavi in na robu nekroze nastane neizrazita kalusna nabrekлина. Zaradi počasnega napredovanja glive v skorji je prvih nekaj let okužba slabo opazna (slika 1). Nekroza se povečuje skupaj z rastjo drevesa in nastane tipična rakava rana. V centralnem delu raka se prično oblikovati peritecijii po petih do osmih letih v slabo definirani stromi. Na površini skorje opazimo temne predele s črno stromjo, črni vratovi peritecijev, dolgi do nekaj milimetrov izraščajo iz skorje ali iz strome (slika 2).

Slika 1: Začetna obzidba z javorovim rakom. Skorja se je rahlo upokojila, spremenila barvo, rob rane je rahlo dvignjen.

Slika 2: Po 5 do 8 letih po odmrju se v skorji prično obliževati strome s peritecijami (vidni so črni vratovi peritecijev), v sredini rane je odmrla veja, skozi katero je gliva verjetno okužila drevo.

Slika 3: Skorja odpada na najstarejšem delu okužbe, strome s peritecijami so koncentrično razporejeni na veliki površini raka.

Slika 4: Močno iznakaženo deblo s starim javorovim rakom, v izpostavljen les so se naselile glive, ki ga razkrajajo.
Strome z vratovi peritecijev ali sami vratci peritecijev lahko prekrivajo obsežno površino raka, včasih so razporejene koncentrično in vsaka skupina nakazuje letni prirastek glive v skorji (slika 3). Pomembna razlika od drugih rakavih bolezn je, da odmrla skorja zelo dolgo ostane pritirjena na rakavi rani. Najprej prične odpadati skorja na najstarejšem delu v sredini raka, takrat je običajno deblo že delno deformirano ali ukrivljeno. Stare rakave rane popolnoma iznakazijo deblo (slika 4), v izpostavljen les se naselijo različne glive, ki povzročajo trohobo lesa in lahko na odprt rakavi rani oblikujejo trošnjake.

Značilni znak okužbe z *E. parasitica* je obsežen hifi ne preplet v skorji rakave rane in še posebej na njenem robu, ki je v obliki tankih micelijskih pahljačic bele do rahlo krem barve (slika 5). Te pahljačice se razvijajo v okuženi skorji dve leti po nastanku okužbe (Lachance in Kuntz 1966). Na drevesu je običajno ena rakava rana, najpogosteje je locirana na spodnjem delu debla. Na okuženem lesu brez skorje se tudi lahko oblikujejo strome s peritecijij, vendar je to redko (slika 6) (Kliejunas in Kuntz 1974, Davidson in Lorenz 1938).

![Slika 5: Pahljačice podgobja v skorji so bele do krem barve](image5)

![Slika 6: Strome s peritecijij se lahko oblikujejo tudi na lesu](image6)

Morfologija

Peritecijii imajo premer 0,6-1,0 mm, vratovi so dolgi do 5 mm, njihova dolžina je odvisna od globine nastanka peritecija v skorji (slika 7). Konidiji nastajajo v skorji v spremenljivih konidiomih, ki jih po morfologiji lahko označimo kot piknidije ali acervule. Konidiji so hialini, ukrivljeni v obliki črke U, na končih koničasti in merijo 17-32 × 1,2-1,8 μm (slika 8). Aski so majhni, s podaljšanim spodnjim delom (stipa), ki meri 10-40 × 1,5 μm in širšim zgornjim delom z askosporami, ki meri 32-40 × 6-7 μm. Askospore so nepravilno uni-, bi- ali več- seriatne, enocelične, rjave, rahlo ukrivljene in merijo 8-11×2-2,3 μm (slika 9) (Davidson in Lorenz 1938, Sinclair et al. 1989).
Slika 7. Peritecji in stroma (črta = 0,5 mm)

Slika 8. Konidiji (črta = 20 μm)

Slika 9. Askı z askosporami (črta = 20 μm)
Način inšpekcije pregleda

Staro okužbo z *E. parasitica* je enostavno determirirati, ker je običajno prisotnih več znachilnih znamenj javorovega raka. Gostiteljska rastlina je vedno javor (*Acer* sp.). Okužba je v obliki pravilne elipse ali pa je rob zvežen, deblo je običajno deformirano. V skorji na rakavi rani in še posebej na njenem robu proti zdravi skorji je dobro opazen micelij v obliki drobnih pahljaščih bele do krem barve (skorjo odstranjujemo z ostrim nožem). Na pet in več let odmrl skorji izraščajo črni vratovi peritecijev ali le-te izraščajo iz rahlo dvignjenih črnih glivnih strom, ki so do enega centimetra v premeru, med njimi pa so plitve razpoke.

Na okužbi, ki je stara do pet let, niso obliškani periteciji. Takrat je rakava rana sploščena do rahlo ugreznjen elipsast del skorje, skoraj brez kalusnega roba. V skorji je pahljaščast micelij bele do krem barve.

Pri okužbi, ki je mlajša kot dveleti, v skorji ni pahljaščega micelija, prisotnost glive lahko dokažemo le z izolacijo patogena v čistih kulturah.

NAČIN GIBANJA IN ŠIRJENJA

Sproščanje askospor v zrak sproščajo padavine in temperature nad 4 °C v vseh letnih odbobjih. Veter raznaša askospore običajno na majhne razdalje, vendar so osušene zelo dolgožive, saj jih nekaj kralj tudi 20 mesecev po osušitvi (Lachance 1971, Johnson in Kuntz 1979).

Najverjetnejsi prenos glive v mednarodnimi trgovini je z okuženimi sadikami in z okuženo neobeljeno hlo dovino. Ni znano, ali lahko na okuženem lesu gliva v ustreznih razmerah oblikuje peritecije.

POMEN ŠKODLJIVEGA ORGANIZMA

Gospodarski vpliv
Javorov rak lahko zmanjša proizvodnjo kakovostnih sortimentov javorjev, kajti najpogosteje se nahaja na spodnjih 3,7 m višine, kar predstavlja najvrednejši sortment drevesa (Kliejunas in Kuntz 1974). Razkrocko lesa v drevesu z javorovim rakom se širi tudi v notranjosti debla. Notranja poškodba je navadna od zunanjega roba raka oddaljena manj kot 0,4 m (Gross 1984a).

Bolezen pogosto povzroči odmiranje podstojnih dreves, ki imajo prsnih premer manjši kot 7,5 cm. Večja drevesa pa se pogosto prelomijo na mestu raka ob močnejšem vetru, obremenitvom snega ali žleda (French 1969, Kliejunas in Kuntz 1974).

Javorov rak se na splošno pojavlja na malo javorjih (pod 5 %), vendar pa se v nekaterih sestojah nahaja na tudi do 40 % vseh javorov (Gross 1984b). V predelu Ontario Owen Sound je bil javorov rak ugotovljen na 7 % sladkornih javorov. Obolela drevesa povprečno izgubijo 12 % skupnega volumena in 49 % prodajnega volumena (*ibid*), kar pomeni veličino izgubo pri prodaji lesa na trgu.

Javorov rak lahko v Sloveniji najbolj prizadene gorski javor, ki ga je v lesn zakoli 2,4 % (7.492.000 m3) in je slovenska 7. najpogosteja drevesna vrsta, ostrostribni javor, ki ima lesno zalogo 121.000 m3 ter maklen z lesno zalogo 146.000 m3 (Brus 2004). V kolikor so za bolezen dozvetne tudi druge vrste javorja, lahko pomembno spremeni sestoje, kjer je primešan topokrpi javor (lesna zaloge je 43.000 m3) in ekološko pomembna trokruna javor (*A. monspessula:um* L.) in tatarski javor (*A. tataricum* L.).

Okoljski vpliv

Slika 10: Karta razširjenosti javorjev (Pirc 1994)

Drevesa z javorovim rakom so manj mehansko stabilna in zato dovoljene za vešolome, zaradi česar so celi sestoji z javorji manj stabilni. Javorov rak pomembno kazi estetski videz javorov, kar je pomemben dejavnik pri parkih in drugih površinah v urbanem okolju.

Obvladovanje

Fitosanitarno tveganje

Občutljivost drugih avtohtorijskih vrst javora v Evropi (npr. A. monspessulanum, A. obtusatum, A. tataricum in drugih) in drugih okrasnih vrst javorov (predvsem Azijskih) ni znana.

FITOSANITARNI UKREPI

Potrebno bi bilo preprečiti promet z ckužnimi sadikami in neobljeno hlodovino iz okuženih območij. Promet z okuženo obeljeno hlodovino in okuženim razrezanim lesom verjetno predstavlja manjše tveganje za širjenje bolezni.

ZAHIVALA

Podatke sta pripravila:
doc. dr. Dušan Jurc in Nikica Ogris, Gozdarski inštitut Slovenije, Ljubljana, Slovenija

BIBLIOGRAFIJA

