REGIONALNA VEGETACIJSKA RAZČLENITEV
BIZIFILNIH BUKOVIH GOZDOV V SLOVENIJI

Milan Piskernik
Naslov avtorja:

dr. Milan Piskernik, dipl. biolog, višji znanstveni sodelavec inštituta za gozdno in lesno gospodarstvo biotehniške fakultete v Ljubljani.
<table>
<thead>
<tr>
<th>Kazalo</th>
<th>Stran</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Namens raziskav in omejitev problema</td>
<td>69</td>
</tr>
<tr>
<td>1 Viri</td>
<td>70</td>
</tr>
<tr>
<td>2 Teoretične postavke konkretnega sistema vegetacije</td>
<td>71</td>
</tr>
<tr>
<td>3 Specifični tipološki problemi</td>
<td>72</td>
</tr>
<tr>
<td>4 Preglednica stopenj konkretnega vegetacijskega sistema gozdov</td>
<td>75</td>
</tr>
<tr>
<td>5 Pregled klimocenoz v bazilnih bukovih gozdov</td>
<td>76</td>
</tr>
<tr>
<td>6 Soodvisnost med zgradbo determinant in njihovo razporejenostjo v prostoru</td>
<td>77</td>
</tr>
<tr>
<td>7 Klimocnotske razpredelnice</td>
<td>79</td>
</tr>
<tr>
<td>8 Razmerje prikazanih osnovnih enot do asociacij drugih avtorjev na ozemlju Slovenije</td>
<td>80</td>
</tr>
<tr>
<td>9 Karte bukovih vegetacijskih enot</td>
<td>82</td>
</tr>
<tr>
<td>Zusammenfassung</td>
<td>84</td>
</tr>
<tr>
<td>Literatura</td>
<td>87</td>
</tr>
<tr>
<td>Kartografske priloge (6)</td>
<td>103</td>
</tr>
<tr>
<td>Tabelarne priloge (70)-priložene separatom</td>
<td></td>
</tr>
</tbody>
</table>
0. Namen raziskav in omejitev problema

Pri obdelavi vegetacije bukovih gozdov Slovenije, ki jo je začel v Sloveniji G. Tomažič (1939), smo skušali doseči celovito podobo za vse ozemlje in smo ta namen v glavnem tudi dosegli. Vsekakor smo se morali omejiti, tako da smo ostali v mejah bukovih gozdov na karbonatni podlagi, ki so seveda tipološko bogateje razčlenjene in tudi zaradi bogatejšega rastlinja težji za obdelavo kot gozdovi na kislji podlagi. Da bi zajeli kar se da obsežen prostor, smo vključili tudi gozdove na mešanih terciarnih kameninah v Primorju in vzhodni Sloveniji, ki prehajajo že v acidofilne tipe.

Trudili smo se razčleniti te bukove gozdove tako, da bi bila razčlenitev ne samo realna, ampak tudi pregledna, preprosta in logična in da bi imela hkrati uporabno vsebino. Zato smo se v največji mogoči meri opirali na drevesne vrste in skušali njihove glavne areale vključiti v sistem vegetacije bukovih gozdov.

Enote in skupine enot bukovih gozdov, ki smo jih ugotovili, so klimatogene in s tem regionalne. Zaradi tega omogočajo preglednost v našem celotnem prostoru. Predstavljajo pravzaprav prvo, nujno stopnjo obdelave. Šele v njihovem okviru je mogoče poglobljeno raziskovati krajevne enote, ki so v glavnem pedogene in zasedajo konkretna rastlinska, pri tem pa priti do trdnih zaključkov glede razvojne tendence, strukture, pritiskanja in zdravlja sestojev.

Bukev sama je pri nas najizrazitejša klimatogen drevesna vrsta, ker med vsemi drevesi zajema kot prevladujoča vrsta v gozdovih najširši strmeni višinski razpon. Segal od 200 do 1600 m, medtem ko rastejo posamezna drevesa bukve v nizinii do 160 m, v gorovju do 1700 m.

Izdelane karte vegetacije bukovih gozdov v Sloveniji so vsekakor bistveni del tega fitocenološkega prispevka, nič manj pa tudi tipološke razpredelnice, ki pomagajo prikazati realnost postavljene enot. Razpredelnice same nikakor niso zadostne, da to realnost dokažejo, to zmore najbolje kartografski prikaz. Načelo, ki smo ga v skladu z našimi dosedanjimi izkušnjami uporabili, je namreč to, da odloča o sistematski pripadnosti, pa tudi ekologiji vsake kombinacije rastlin na nekem kraju ne edino kombinacija sama, ampak tudi položaj te kombinacije v razmerju do vegetacije v neposredni okoličini in na širšem prostoru okrog nje. To obenem pomeni, da nismo poudarjali krajevnih posebnosti in smo se s tem izognili majhnim tipom v največjih mogočih meri, namesto njih pa smo iskali širše realne regionalne povezave s pomočjo rastlin, ki so znotraj sicer specifičnih lokalnih kombinacij te povezave omogočale.

Upoštevana literatura je omejena z maloštevilnimi izjemanami na delu o bazifilnih bukovih gozdovih, ki vsebujejo originalne fitocenotske razpredelnice.

1. Viri

Tipološke razpredelnice in karte so narejene na podlagi originalnih lastnih popisov in opisov ter opisov, ki so jih napravili študenti pri kartiranjih gozdov. Popisni viri za bazifilne bukove gozdove so razporejeni po glavnih pokrajinah Slovenije takole:

<table>
<thead>
<tr>
<th>popisov avtorjev</th>
<th>opisov študentskih avtorjev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovensko primorje</td>
<td>46</td>
</tr>
<tr>
<td>Zaistriški primorski Dinaridi</td>
<td>361</td>
</tr>
<tr>
<td>Zaledni Dinaridi</td>
<td>134</td>
</tr>
<tr>
<td>Severni primorski Dinaridi in primorske Alpe</td>
<td>86</td>
</tr>
<tr>
<td>Zaledne in celinske Alpe</td>
<td>215</td>
</tr>
<tr>
<td>Predalpe</td>
<td>19</td>
</tr>
<tr>
<td>Preddinaridi in Predpanonija</td>
<td>72</td>
</tr>
</tbody>
</table>

- 70 -

2. Teoretične postavke konkretnega sistema vegetacije

Ker temelji vegetacija na flori, to je na celoti rastlinskih vrst na nekem ozemlju, in ker so temelj vegetacije enote, ki niso krajevne, ampak dovolj obsežne, da omogočajo uporabo pregled na širšem prostoru, se moramo pri oblikovanju konkretnega sistema vegetacije opirati na optimalne, to je najbolj gosto naseljene dele arealov rastlin, ki so za določeno ozemlje značilne. Le na ta način dobimo enote, ki izražajo dejansko geografsko in s tem eko-loško specifičnost kakega ozemlja.

Flora slovenskega ozemlja je razporejena na poseben način, in sicer tako, da je največ različnih rastlinskih vrst, med njimi precej specifičnih za naše ozemlje, združenih na območju notranjih planot gorskega krasa in v Primorju, zlasti v zaledju Tržaškega zaliva, odtod navznoter, to je proti severu, severovzhodu in vzhodu pa je vrst vse manj in med njimi skoraj ni več specifičnih južnih, ampak še srednje evropske. Najbolj splošna specifična rastlina bazofilnih bukovih gozdov na slovenskem ozemlju, na vzhodu tudi edina, je kokorik (Cyclamen purpurascens). Vendar kokorika ne moremo uporabiti v sistemu za celotno slovensko zemljo, ker je v zahodni Slovini njegov areal preveč vrzelast. Preostane torej, da vzamemo za osnovno manjše, bolj strnjene areale rastlin, ki zasedajo posamezne zemljelepine in klimatske enote Slovenije.

Že pri obdelavi barij smo uporabili princip gradnje vegetacijskega sistema po stopnjah od zgoraj navzdol, to je od najširših enot do najžiljih z upoštevanjem obsežnosti arealov predstavnic teh stopenj in njihove potencialne višine vzrasti, in sicer tako, da predstavnice višjih stopenj ne prihajajo v poštev kot predstavnice nižjih stopenj sistema razen v izjemnih primerih. S tem

- 71 -
kriterijem izostrimo sistem in ga vsebinsko poglobimo. Stopnje, ki zajemajo enote z obsegom več višinskih pasov, so stopnje reda, zveze in skupine, in sicer v okviru razredov, ki združujejo pri gozdovih vse gozdove iste drevesne vrste. Najnižje široke stopnje predstavljajo združbe, ki zajemajo en sam višinski pas, katerega razpon je v istem območju nekako 300-400 m.

Poudariti je treba, da so izmed konkretnih stopnij sistema samo klimatogene stopnje lahko prostorsko razsežne. To velja seveda le za klimaks, medtem ko so paraklimaksi, ki so prav tako klimatogeni, navadno prostorsko močno omejeni. Enote, ki so vezane na tla, to je konkretne pedogene enote, so nasprotno klimatogenim zelo ozke, krajevne, saj se tla spreminjajo takorekoč na vsakem koraku. Ugotavljanje konkretnih pedogenih enot je zato zelo težavno; pri tem je treba poznavati natančno ne samo krajevno vegetacijo, ampak tudi krajevne talne razmere.

Bistveno je tudi dejstvo, da dobijo krajevne pedogene enote pravo vsebinsko šele v okviru klimatogenih stopnij. To zato, ker klimatogene značilnosti zaradi svoje zemlježne vezanosti in enkratnosti preprečujejo ponavljanie enakih pedogenih rastlinskih kombinacij na oddaljenih krajih, ki imajo izrazito različno podnebje, toda morebiti na videz podobno rastlinje, zlasti zaredi istih prevladujočih rastlinskih vrst.

3. Specifični tipološki problemi

Pri sintezi vegetacije bukovih gozdov se prvič resno srečujemo s posebnimi problemi konkretne tipologije gozdov. Za to je treba ob tej priložnosti razjasniti nekaj pomembnih konkretnih tipologije gozdov, ki so še ostali neopredeljeni, da bi kasneje mogli preiti na študij biološkega bistva rastlinskih združb. Problemi so v glavnem naslednji.

1. Če postavimo za osnovno enoto vegetacije združbo, ki je omejena na en sam višinski pas (monozonalna združba), kar je ekološko neobzirno, je lahko - kot kažejo kartografski prikazi - areal take osnovne enote večji kot areal plurizonalne skupine monozonalnih združb in primerljiv arealu plurizonalne zveze monozonalnih združb.

Zato je vprašanje, ali naj smatramo za osnovno enoto raje skupino in pojmujemo monozonalno vegetacijo kot njeno.
diferenciacijo, ali pa naj obratno skupine smatramo za diferenciacijo monozonalnih združb. Vsekakor so skupine flornogeografsko najbolj homogene enote, ker so vezane na geografske enote našega ozemlja (zlasti razločno v Julijskih Alpah in Dinaridih). Diferenciacije bi lahko v obeh primerih imel značaj predeleih enot (višjega ranga) ali pa subasociacij (nižjega ranga).

Mislimo, da je rešitev tega vprašanja v upoštevanju dejstva, da niti skupina niti monoazonalna "enota" ne moreta sami zase predstavljati osnovne, to je floristično, razvojno in ekološko enotne kombinacije vrst, ker se pač zaradi znatne razsežnosti obe geografsko močno diferencirate. Osnovno kombinacijo vrst-enoto v pravem smislu - dobimo še le s kombiniranjem vseh možnih stopenj konkretnega sistema od razreda do monozonalne stopnje. Monoazonalne stopnje sicer niso flornogeografske najbolj homogene tvorbe, so pa najbolj homogene florističnoekološko. Topolota, na katero so oprice, je vsekakor glavni ekološki faktor in zasluži za to v ekološko utemeljenem vegetacijskem sistemu poudarjeno pozornost; temeljni pomen monozonalnih kombinacij pa poudarimo s tem, da po njih poimenujemo osnovne regionalne vegetacijske enote (klimocenoze). Pri tem je tudi gradnja sistema dosledna, ker vse višje stopnje temelje na flornogeografskih, vse nižje na floristično-ekoloških značilnostih vegetacije in področij, ki jih pokriva.

Pojem ekocenoze (rastitiščne združbe), ki smo ga uporabljali doslej za klimatogene osnovne enote vegetacije, moramo torej pomakniti na nižjo stopnjo krajevnih pedogenih enot, ki zasedajo konkretna rastitišča, za monozonalne regionalne združbe pa uporabiti ime klimocenoza.

2. V gozdovih našega ozemlja in splošno toplih (vlažnih!) področij se druži toliko pomembnih rastlinskih elementov, da nastane vprašanje nomenclature, ki naj zadovoljivo izrazi njihovo sestojno sestavo, geografsko specifičnost in ekologijo. Če bi hoteli plastično izraziti osnovne vegetacijske enote naših gozdov, vsaj tistih z bogatim rastlinjem (bazilnih), bi morali vključiti v nomenclaturo:

a) prevladujoče drevesno vrsto
b) najbolj razširjeno primešano drevesno vrsto
c) območno fitogeografsko značilnico
d) predelejo najstaljšo rastlinsko vrsto
d) predstavnico višinskega pasu.

To bi bila petimenska nomenclatura, ki bi bila sicer zelo instruktivna, vendar za živo rabo nepraktična. Zato jo je
najbolje reducirati na troimensko (trinarno), kar je mogoče ta-
ko, da se tip izrazi le z rastlinami nižjih slojev v okviru goz-
da določene prevladujoče drevesne vrste in njene glavne prime-
si. Primer: bukovo-jelov gozd Geraniı nodosi-Rhamni fallacis
Asaretum europaei.

S trinarno nomenklaturo zajamemo in izrazimo samo
regionalne enote (skupke enot). Krajevne drobne enote (subasoci-
cacije, faciesi, subfacadesi) zahtevajo razširitev nomenklature.

3. S konkretnimi enotami moramo biti sposobni opre-
deliti vsak kraj v gozdovih. Zato se pojavi vprašanje, kako for-
mulirati višje enote (skupke), da bi na najpreprostejši način, to
je s čim manj enotami, pokrili vso gozdno površino. To smo
skušali doseči z dvema rastlinskima vrstama za vsako stopnjo in
rezultati so v okviru našega ne ravno pičega grašava (18 475
popisov) popolnoma zadovoljivi. Enote sistema, ki smo jih dobi-
li z združitvijo po dveh determinant, ki imata znotraj enote le delno
skupen areal, so seveda bistveno drugačne od onih, v katerih
se areali pokrivajo oziroma v katerih sta obe determinanti stal-
ni. Da bi se to videlo že po imenu, smo se odločili uporabiti
za združene enote pripomo-eto, kakor je bila v rabi do nedavna
za enote v smislu J.Braun-Blanqueta, in pritom -o (brez upo-
števanja posebnosti v sklanjatvi) za homogene enote, zlasti za
monozonerne združbe, ki so poimenovane po prevladujoči stabilni
drevesni vrsti in po stabilni monozonerani determinanti.

4. V konkretnem praktičnem smislu, to je pri obrav-
navi ekologije, razvojne dinamike in rastnih lastnosti vegetacije
imamo na našem ozemlju opravka z znatnim številom enot, ki
predstavljata osnovne regionalne kombinacije rastlinskih vrst. To
število izhaja iz okoliščine, da ima Slovenija v mejah bazilnih
bukovih gozdov 80-90 vegetacijskoklimatičnih območij, izraženih
z redovi, zvezami in skupinami rastlinskih združb v teh gozd-
ovih. Na posamezne od teh enot razpadejo monozonerne združbe,
vsevseveda le na tiste, ki se regionalno z njo kombinirajo.
Število vseh osnovnih vegetacijskih regionalnih enot je vsekakor
tolikšno, da za podroben študij sestojev in vegetacije pod njimi
zagotavljena kontinuirano in logično variacijo njihovih ekoloških in
bioloških potez.

- 74 -
4. Preglednica stopnje
konkretnega vegetacijskega sistema gozdo

Zgradbo konkretnega sistema gozdnne vegetacije si
zamišljamo takole:

SKUPKI VEGETACIJSKIH KOMBINACIJ
A. KLIMATogene STOPNJE SISTEMA

I. Plurizonalni skupki klimatogenih združb
 1. razred (-etea) po prevladoči ali edini drevesni vrsti
 2. redovi (-etalia) po najsplošnejših pridruženih drevesnih
 ali grmovnih vrstah ne glede na njihovo dejansko rast
 (od samih kič do odraslih dreves)
 3. zveze (-ion) po najsplošnejših zeliščih ali grmovnih vrstah
 4. skupine (-aeum) po zeliščnih, grmovnih ali drevesnih vrstah
 z ožjimi kontinuiranimi areali.

II. Monozonalni skupki klimatogenih rastlinskih kombinacij
 5. osnovnice (-etum) po najsplošnejših monozonalnih zelišč-
 nih, grmovnih ali drevesnih vrstah.

POSAMEZNE VEGETACIJSKE KOMBINACIJE

6. okolnice (klimocenoze) s kombinacijo zastopnic razreda,
 reda, zveze, skupine in osnovnice
7. predelnice (-anum) po rastlinski vrsti, ki izraža krajevno
 podnebje ne glede na mikrorelief in tla.

B. PEDOGene STOPNJE SISTEMA

III. Plurizonalne rastlinske kombinacije
 8. talnice (-etosum, -osum) po krajevni razlikovalni rastlini,
 vezani na krajevne talne razmere (in njihove posledice v
 celotnem okolju).
IV. Monozonalne rastlinske kombinacije

9. rastiščnice (ekocenoze) s kombinacijo zastopnic vseh stopnij sistema od razreda do talnic.

5. Pregled klimocenoz v bazifilnih bukovih gozdovih

A - Primorje
B - Zaistrski primorski Dinaridi
C - Zaledni Dinaridi
Č - Severni primorski Dinaridi in primorske Alpe
D - Južne zaledne in celinske Alpe
E - Predaip, Preddinaridi in Predpanonija

<table>
<thead>
<tr>
<th>Število popisov</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Č</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceretum campestris</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helleboreto multifidi</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercuriatricum ovatae</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convallariatum majalis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruscetum aculeati</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aruncetum vulgaris</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poetum nemoralis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Epilobietum montani</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moehringietum muscosae</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asaretum europaet</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosetum pendulinae</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hederetum helicis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardaminetum trifolii</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urticetum dioicae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myosotidetum silvatica</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campanuletum rotundifoliae</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenostylletum glabrae</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epimediuetum alpini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphniuetum aureolae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adoxetum moschatellinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinctetum minoris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salviuetum glutinosae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aposeridetum foetidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cruciatetum glabrae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 76 -
Mercurialietum perennis + +
Calamagrostidetum variae +
Malianthemetum bifolii +
Dentarietum enneaphyllis +
Euphorbietum amygdaoidis +
Luzuletum luzulinae +
Saxifragetum cuneifoliae +
Senecietum abrotanifolii +
Polystichetum aculeati +
Campanuletum scheuchzeri +
Tametum communis +
Helleboretum atrorubentis +
Dentarietum polyphyllis +
Caricetum pendulae +
Dentarietum trifoliae +
Corydaletum cavae +

6. Soodvisnost med zgradbo determinant in njihovo razporejenost v prostoru

Izdelali smo ostro začrtano in jasno regionalno razčlenitev bukovih gozdov, slonečno na rastlinskih vrstah najrazličnejših rastlinskih potreb in zgradbe. Vprašamo se mimogrede, ali je morda kakšna soodvisnost med zgradbo teh determinant in njihovo razporeditvijo v slovenskem prostoru. Poglejmo determinante monozonalnih združb.

pri glavnih zonalnih determinantah in samo pravi apnenec, oziro-
ma dolomit, ne pa tudi fliša (v Koprščini, Brdih in na Banjšici).

1. Sredozenska smrša:
 a) do vrhov gorskega krasa
 trilistna konopnica - gola trdolistna
goli lepen - diakav
okrogloistna zvončnica - gola (razen pri dnu stebla)
 b) od vrhov gorskega krasa proti morju
 okrogloistna zvončnica - gola (razen pri dnu stebla)
goli lepen - diakav
šmarnica - gola kožastolistna
gožna latovka - gola
razrezanoistni teloh - goli trdolisten

2. Alpska smrša:
zimzelen - goli trdolisten zimzelen
lepljiva kadulja - diakava
trežni golšec - goli
deveterolistna mlaja - gola
svinjska Iaknica - gola

3. Panonska smrša:
bršljan - goli trdolisten zimzelen
vimček - goli kožastolisten, sprva diakav
zasavsk mlaja - gola
votli petelinček - goli

Vsi štirje nizi spreminjanja so torej enaki; začno se
spodaj s trdolistnimi vrstami, zastopnice srednje stopnje so diaka-
ve, v najvišjem pasu pa so goli mehkolistne rastline.

Te morfološke razlike imajo nedvomno svoje ekološ-
ko ozadje. Verjetno smemo za naše primere (razen trilistne ko-
nopnica), reči, da pomenijo trdolistne rastline najmanj sveža, dla-
kave bolj sveža in goli najvišjeja rastišča. Seveda pa to velja
le za normalne (klimaksne) nize, medtem ko moramo paraklimak-
se, na primer vegetacijo žlebov in vrtč, presojati posebej. Dia-
kave klimaksne determinante se pojavijo v sredozenskem nizu v
večjih višinah kot v zalednih nizih in so torej vlagoljubnejše.

Da v Primorju razen v zelo topli Koprščini na no-
beni stopnji sistema bukovih gozdov ni zimzelenih determinant
je zanesljivo krivo manjkanje snega v nižjih legah kjer bi se
zmelene rastline lahko držale, če bi pozimi teh predelov ve-
nomer ne hladila in sušila burja.

Razporeditev razlik v zgradbi determinant v prostoru je nov primer tipičnih bioloških krivulj.

7. Klimocenotske razpredelnice

V tipoloških razpredelinah, šest po številu, imamo 219 originalnih popisov. Vsaka razpredelica zase obsega v glavnem območje ene ali več celih zvez in hkrati eno samostojno zemljepisno enoto slovenskega ozemlja. Razporeditev gradija je kot v prejšnjem poglavju naslednja:

1. Primorje: Cyclamineto-Seslerion autunnalis
2. Zaistrski primorski Dinaridi: Sorbeto aucupariae-Rhamnion fallacis; Dryopteridion filicus-maris (paraklimaks)
3. Zaledni Dinaridi: Omphalodion verna
4. Severni primorski Dinaridi in primorske Alpe: Mycelideto muralis-Calamagrostidion variae, Paridion quadrifolii, Geranion robertiani
5. Južne zaledne in celinske Alpe: Oxalido-Helleborion nigri-Prenanthion purpureae
6. Predalpe, Preddinaridi in Predpanonija: Cyclaminion purpurascentis, Pulmonarioio officinalis-Sorbion terminalis, Sambuceto nigrae-Rubion hirti; Gaulion odorati (paraklimaks).

V razpredelinah ni nekaterih alpskih bukovih združb, predvsem iz zahodnih Karavank, ki so bile ugotovljene pri kartiranju, ker nimamo ustreznega lastnega popisnega gradija.

Klimocenotske razpredelnice vsebujejo seveda tudi podatke o floričnem razponu slovenskih bazifinih bukovih gozdov, ki je zaradi velike višinske razprostranjenosti - kar je izraz eko-loškega optima buke - in prehodnega položaja iz Submediterana v Predpanonijo izreden. Če ga označimo z značilnimi redkimi rastlinami, dobimo takoš silko.

Med izrazito topoljubnimi rastlinami najdemo naslednje: Ceterach javorkeanum, Genista januensis, Hierochloë austriensis, Aristolochia pallida, Rhamnus rupestris, Genista radiata (tudi višinska);
med nižinskimi obvodnimi: Salix alba, Thalictrum flavum;
med mraziščnimi: Listera cordata, Ranunculus cas-subicifolius, Hockeria lucens, Plagiothecium undulatum;
med viagoljubnimi gorskimi: Corydalis ochroleuca,
Scrophularia vernalis;
med visokogorskimi: Saxifraga incrustata, Leontopodium alpinum.

Zelo redka sta tudi Hieracium racemosum in Equisetum hiemale.

Razpon drevesnih vrst, ki so primešane prevladuje-či bukvi, sega od puhavca do rušja in od gabrovca do bele vrbe.

8. Razmerje prikazanih osnovnih enot do asociacij
 drugih avtorjev na ozemlju Slovenije

Razmerje med združbami, ki jih je prikazal Ž. Košir (1962, razen asociacije Savensi-Fagetum) in tukaj prikazanimi združbami je naslednje. Querco-Fagetum in Hacquetio-Fagetum Ž. Košir se pokriva (najbrž ne popolnoma) s klimocenozo Fago-Epimeđietum alpinii; Enneaphyllo-Fagetum se pokriva s klimocenozo Fago-Dentarietum polyphyllis, vendar samo v smislu razpredelni-

O razmerju do bazifinih bukovih združb na ozemlju Evrope zunanj Slovenije naj povemo le, da je načelo uporabljanja optimalnih arealov klímocenotiskih determinant dalo ugotovljene enotam toliko stabilnost, da po naknadni primerjavi z bogato tudi literaturo (če 200 razprav) ni bil potreben noben popravek sistema.

9. Karte bukovih vegetacijskih enot

Na 5 kartah merila pribl. 1:800 000 smo prikazali konkretne klimatogene redove, zveze, skupine in cenose bazifilnih bukovih gozdov celotnega slovenskega ozemlja. Klimocenoze so razdeljene na dve kari, posebej za spodnje lege in posebej za višje lege. Te karte so vsekakor zanimive, ker se na njih pri vseh stopnjah sistema vidi zonalni razpored od jugozahoda proti severovzhodu in od jugovzhoda proti severozahodu.

Razume se, da so meje prikazanih enot interpolirane, kar pa pri uporabljennem merilu ne moti veliko. Nekatere odseke
bo seveda treba na terenu še pregledati in popraviti, pri tem pa
paziti na eksklave posameznih vegetacijskih kategorij zunaj nji-
hovih glavnih arealov.

V Gorjancih je najvišji vegetacijski pas (Fago-Cory-
daletum cavae) prikazan po podatkih Ž. Koširja (ekvivalentno aso-
ciaciji Isopyro-Fagetum razen subasociacije z Dentaria trifolia).
Iz gradiva Ž. Koširja je tudi razvidno, da je treba prištevati Isopyro-Fagetum, pa tudi nekatere popise vseh drugih njegovih združb
paraklimatski zvezi vlažnih bukovih gozdov Galion odorati.
Die regionale Vegetationsgliederung
der basiphilen Buchenwälder Sloweniens

(Zusammenfassung)

Auf Grund von 933 Vegetationsaufnahmen des Autors
und 17542 während der Kartierungen verfertigten Beschreibungen
werden für das Gebiet Sloweniens konkrete klimatogene System-
einheiten der basiphilen Buchenwälder von den Ordnungen abwärts
festgestellt, mit pflanzensoziologischen Tabellen belegt und auf
Karten im Massstabe etwa 1 : 800 000 dargestellt.

Die Systemstufen sind auf dem Umfange der optimi-
en (kontinuierlichen) Areale ihrer Determinanten und auf der poten-
tiellen Wuchshöhe dieser Determinanten begründet. So wird die
Klasse innerhalb der Buchenwälder durch die im Bestand herr-
schende Buche repräsentiert, die Ordnungen durch allgemein ver-
breitete konstant beigemischte Baumarten, während die niedrigeren
Stufen hauptsächlich durch Kräuter repräsentiert werden und nur
in den südlichsten Teilen des Gebietes durch Strauch- oder Baum-
arten. Die niedrigste klimatogene Systemstufe ist die noch immer
stark komplexe Zonalstufe, welche als einzige nur einen Höhen-
gürtel einnimmt. Die klimatogene Grundeinheit ist schließlich die
Klimozönose, welche als Ausdruck der gesamten klimatogenen
Pflanzenkombination durch Kombination der Klassen- bis monozo-
nalen Determinanten formiert wird. Die weitere Aufteilung ergibt
bodengebundene (pedogene) echte Einheiten (Subassoziationen, Fa-
zies).

Die klimatogene Gliederung der Buchenwälder wurde
aus dem Grunde durchgeführt, weil sie allein konkrete grossflä-
chige regionale Einheiten der Vegetation und somit eine umfassen-
de konkrete Übersicht zu geben vermag. Die pedogene Gliederung
resultiert dagegen in lokalen Einheiten, weil der Boden auf Schritt
und Tritt verschieden ist. Die Realität der Einheiten wurde da-
durch erzielt, dass die niedrigeren engergefassten Stufen auf je
einer Pflanzenart basieren, die umfangreichen höheren aber in
der Regel auf der Kombination je zweier Arten. In beiden Fäl-
len wurde darauf geachtet, dass auf jeder Stufe dadurch die ge-
samte Fläche aller ausgeschiedenen Regionen - soweit durch die
Aufnahmen erfasst - bedeckt wurde. Auf diese Weise ist es nun
einerseits prinzipiell möglich, jede Stelle in den Buchenwäldern
auf kalkreicher Unterlage typologisch einzuordnen, andererseits
aber die neuen Pflanzenkombinationen leicht als solche zu erken-
nen und mit ihnen das vorbereitete System zu vervollständigen.

Die ökologische Logik dieser Gliederung kommt sehr klar darin zum Ausdruck, dass die Grenzen aller Einheiten mit ihrem Verlauf sowohl annähernd parallel zur Adriaküste als auch parallel zum Alpenmassive eine konsequente Gürtelanordnung aufweisen.

Es ist hervorzuheben, dass nach den hier angewendeten Kriterien zwei Pflanzengesellschaften determiniert worden sind, welche mit schon vorher beschriebenen oder angedeuteten gleichnamigen Assoziationen sich inhaltlich und nomenklatorisch decken. Das sind das tabellar bearbeitete Savensi-Fagetum Ž. Košir 1962 (= Fago-Dentarietum trifoliale) und das Asaro-Fagetum (=Fago-Asaretum europaei), angedeutet von S. Pignatti (1966) als die mögliche Klimaxgesellschaft der unteren montanen Stufe in der Ziljska dolina (Gailtal im südwestlichen Kärnten), während eine dritte - das Enneaphylo-Fagetum Ž. Košir - nur nomenklatorisch mit dem Fago-Dentarietum enneaphyllis übereinstimmt.

Das Asaro-Fagetum ist vom Autor schon im Jahre 1959 (siehe Literaturnachweis) als solches erkannt und unter demselben Namen auf Grund von 9 Aufnahmen tabellarisch aufgestellt worden.

F. Morton beschrieb (1939) im Bereich der Planina-Grotte mit zwei Aufnahmen die floristische Zusammensetzung eines Buchen-Tannenwaldes, welcher ebenfalls zum Fago-Asaretum zu zählen ist; er gehört - wie übrigens auch die Buchenbestände in den Karsttrichtern der höheren Lagen - zum Verbande Dryopteridion filicis-maris und allem Anschein nach zur Gruppe Dentariaeum pentaphyllis.

zigen eigenen Aufnahme repräsentiert ist. Diese beiden Assozia-
das Isopyro-Fagetum Ž.Košir in unseren Tabellen mit einer ein-
tionen sind demnach nur vom genannten Autor beschriebene Gesell-
schaften, welche als Klimozönosen die Namen Fago-Lasernpittetum
krapfii (die erste) und Fago-Corydaletum cavae (die zweite, ausser
den Aufnahmen mit Dentaria trifolia) tragen würden. Bei M.Zupan-
čič (1969) finden wir drei Aufnahmen von Buchenwäldern, deren
erste klimozönotisch nicht einreihbar ist, die zweite ein Fago-A-
saretum europaei, die dritte ein Fago-Cardaminetum trifoliae
darstellt (anstatt des originellen Abieto-Fagetum dinaricum V.Tre-
gubov 1957). Das Aceri-Fagetum dinaricum M.Zupančič 1967 ist
wegen der niedrigen Konstanz (III) von Adenostylies glabra trotz
der gleichen Höhenlage nur teilweise identisch mit dem Fago-Aden-
ostylletum glabrae (=Adenostylo-Fagetum bei M.Piskernik 1959,
6 Aufnahmen). Es ist klimozönotisch heterogen und umfasst auch
Bestände des Fago-Adoxetum moschatellinae und des Fago-Myoso-
tidetum silvaticae. Das Anemone-Fagetum V.Tregubov 1962 stellt
im klimozönotischen Sinne die Gruppe Fago-Anemonaeum trifoliae
dar.

Bei dem nachträglich erfolgten Vergleich mit etwa
200 originelle phytozönotische Tabellen enthaltenden Abhandlungen
anderer Autoren erwies sich, dass die auf optimalen Arealen der
Determinanten ausgearbeitete Vegetationsgliederung der basiphilen
Buchenwälder der spezifischen geographischökologischen Position
Sloweniens durchaus entspricht.

Mit vorliegender Abhandlung ist innerhalb der basi-
philen Buchenwälder längs der gesamten slowenisch-kroatischen,
slowenisch-österreichischen und slowenisch-italienischen Grenze
die konkrete Kontaktbasis nach Süden, Norden und Westen geschaf-
fen worden.

O bukovim šumama u FNRJ. - Zbornik Inst. ekol. i biogeogr. 1, Beograd 1950.

De Morton F.: Monografia fitogeografica delle voragini e doline nella regione carsica di Postumia. - Trieste 1939.

- 89 -
Tipovi šuma na eocenskom mlju severne Bosne.- Rad. Šum. fak. i

Fabijanowski J., Oleksy B.: Metody przebudowy niektórych
drzewostanów dolnoreglowych w Tatrzańskim Parku Narodowym.-
Ochrona przyrody, Krakow 1959.

Fabijanowski J., Zarzycki K.: Rośliność rezerwatu leśnego
Swinia Góra w Górach Świętokrzyskich.- Publ. Inst. bot. univ.
jagell. XXVI/1, Krakow 1965.

Ferrarini E.: Studi sulla vegetazione di altitudine delle Alpi

Studi sulla vegetazione di altitudine della Alpi Apuane.- Fond.F.

Frehner H.-K.: Kartierung der Waldgesellschaften des V.
aargauischen Forstkreises Zofingen.- Veröff. Geobot. Inst. ETH

Fukarek P.: Geobotanische Grundlagen für höhere systematische
Einheiten der Waldgesellschaften.- Pflsoz. Systematik, Den
Haag 1968.

Fukarek P. in dr.: Zajednica bukve i javora gluca (Aceri
obutisati-Fagetum Fab., Fuk. et Stef. 1963) jugozapadnih padina
zapadnih Dinarskih planina.- Mitt. Ostalp.-din.pflsoz.Arbeitsg.7,
Trieste 1967.

Fukarek P., Stefanović V.: Nova nalazišta planinskog ja-
vora (Acer Heldreichli Orph. in Boiss.) na planinama Bosne i Her-

Prašuma Peručica i njena vegetacija.- Rad. Poljopr. -šum. fak. 3, Sa-
rajevo 1958.

Füllekrug E.: Die Waldgesellschaften an der Schanze bei Bad
Gandersheim und ihre räumliche Gliederung.- Vegetatio XV/1, Den
Haag 1967.

Gajić M. in dr.: Pregled šumskih fitocenoza planine Maljena.-
Glasnik Šum. fak., Beograd 1954.

Il faggio in Sicilia. - Flora e vegetatio italic a 2, Sonbrio 1960.

Horvat I.: Biljnosociološka istraživanja u Hrvatskoj. - Glasnik za šum.pokuse 6, Zagreb 1938.

Vegetacija planina zapadne Hrvatske. - Prir.istraž. JAZU, Zagreb 1962.

Prethodna saopštenja o poljskim jasenovima i o nekoj reliktnoj fitocenozi Srbije. - Glasnik Šum. fak., Beograd 1951.

Libbert W.: Die Vegetationseinheiten der neumärkischen Stau-
1933.

Lohmeyer W.: Die Pflanzengesellschaften der Eilen-
rizede bei Hannover. - Mitt. Flor.-soz.Arbeitsg., Stolzenau/Weser
1951.

1953.

Molinier R.: L'excursion en Provence (Sud-Est de la France) de la Société internationale de Phytosociologie. - Vegetatio VIII/5-6, Den Haag 1959.

Der Linden-Buchenwald. - Vegetatio XVI/1-4, Den Haag 1968.

- 98 -

- 99 -

- 100 -

Šumska vegetacija Slovenije.- Encikiopedija Jugoslawije, Zagreb 1968.

Pflanzengeographische Stellung und Gliederung Sloweniens.- Vegetatio XVII/1-6, Den Haag 1969.

Das submediterran-Illyrische Element in der mitteleuropäischen Laubwaldvegetation Sloweniens.- Feddes Repert. 81/1-5, Berlin 1970.

-: 101 -

Kartografske priloge
Dejanski areal Fagus silvatica L. s.l.

Okvirni areali:
FS = Fagus silvatica L.
FM = Fagus moesiaca (Domin, Maly)Czeczott
 (areal prehodnih oblik)
FO = Fagus orientalis Lipsky
 Areali: Meusel-Jäger-Weinert 1965