Zbornik gozdarstva in lesarstva, 52, 1997, s. 165 - 186

GDK 174.7 Abies alba Mill. : 48 - - 015
Sprejeto / Accepted: 27. 2. 1997

UMIRANJA JELKE (Abies alba Mill.) V SLOVENIJI: PREGLED RAZISKAV KATEDRE ZA TEHNOLOGIJO LESA

Katarina ČUFAR

Izvleček
Prestavljamo pregled raziskav Katedre za tehnologijo lesa pod vodstvom Torellija o propadanju jelke (Abies alba Mill.) v Sloveniji. Raziskave v obdobju 1985-1996 so vključevali spremembo stanja jelke s pomočjo merjenja električne upornosti (EU), anatomske in fiziološke interpretacije meritev EU, upadanje rasti in pripravljke, študij fenologije, reproduktivne rasti, pojava sekundarne košnje, ugotavljanje vlažnosti in kvalitete lesa, število služnih celic v skorji in travmatskih smolnih kanalov v lesu ter odziv lesa in skorje na poškodovanje.

Ključne besede: Abies alba, propadanje, električna upornost, anatomska lesa in skorja, rast

SILVER FIR (Abies alba Mill.) DECLINE IN SLOVENIA: A REVIEW OF THE INVESTIGATIONS CARRIED OUT BY THE CHAIR OF WOOD SCIENCE

Abstract
Investigations on silver fir (Abies alba Mill.) decline in Slovenia conducted by the Chair of Wood Science directed by Torelli are reviewed. The investigations completed within 1985-1996 include the monitoring of tree condition using an electrical resistance (ER) measuring method with anatomical and physiological interpretation of the ER readings, studies on growth reduction, and phenology, reproductive growth, development of epicormic branches, wood moisture content and wood quality, the frequency of slime cells in the bark and traumatic resin canals in wood, and the responses of wood and bark to mechanical wounding.

Key words: Abies alba, decline, electrical resistance, wood and bark anatomy, growth

Prof. dr., dipl. inž. les., Biotehniška fakulteta, Oddelek za lesarstvo, 1000 Ljubljana, Večna pot 2, SLO
CONTENTS

1 INTRODUCTION / UVOD ... 167
2 SAMPLING AREAS AND TEST TREES / VZORČNE PLOŠKE IN TESTNA DREVESA ... 167
3 ELECTRICAL RESISTANCE (ER) TO DETERMINE TREE CONDITIONS / ELEKTRIČNA UPORNOST ZA DOLOČITEV STANJA DREVJA ... 169
3.1 ANATOMICAL AND PHYSIOLOGICAL INTERPRETATION OF ER READINGS / ANATOMSKA IN FIZIJOŠKA INTERPRETACIJA MERITEV ELEKTRIČNE UPORNOSTI ... 169
3.2 MONITORING TREE CONDITION / SPREMLJANJE STANJA DREVJA ... 170
4 TREE RING ANALYSES / ANALIZE BRANIK ... 171
5 PHENOLOGY, OCCURRENCE OF EPICORMIC BRANCHES AND REPRODUCTIVE GROWTH / FENOLOGIJA, POJAV EPIKORMSKUH VEJ IN REPRODUKTIVNA RAST ... 172
6 WOOD QUALITY / KVALITETA LESA ... 173
7 OCCURRENCE OF SLIME CELLS IN PHLOEM AND TRAUMATIC RESIN CANALS IN XYLEM / POJAV SLUZNIH CELIC V SKORJI IN TRAVMATSKIH SMOLNIH KANALOV V LESU ... 174
8 RESPONSE OF WOOD AND BARK TO MECHANICAL WOUNDING / ODZIV LESA IN SKORJE NA MEHANSKO POŠKODOVANJE ... 174
9 CONCLUDING REMARKS / ZAKLJUČKI ... 176
10 SUMMARY ... 177
11 POVZETEK ... 178
12 REFERENCES / VIRI ... 181

The work was funded by the Ministry of Science of the Republic Slovenia; U.S. Department of Agriculture; and supported by the Forest Service of the Republic Slovenia, district units - Kočevje, Ljubljana, Maribor, and Postojna.
1 INTRODUCTION

Periodic silver fir decline has been observed in Europe for more than a century. In the 1970's it became a serious problem in Central Europe. Increased damage has also been observed in East and Southeast Europe and the survival of fir seemed to be endangered. The precise etiology of declining tree health was not known, but air pollution combined with drought, or other climatic changes, was considered to be part of the problem.

Generally Slovenia belongs to regions showing severe silver fir decline. In the last five decades the proportion of fir in Dinaric forest stands of Slovenia has steadily declined. The mortality especially increased in the early 1960's.

Due to high importance and damage of fir the Chair for Wood Science directed by Torelli investigated several aspects of fir decline. The objective of this paper is to review the results including: (a) monitoring tree condition using electrical resistance (ER) measuring method, (b) anatomical and physiological interpretation of ER readings, (c) reduction of growth, (d) study of phenology, (e) reproductive growth, (f) development of epicormic branches, (g) moisture content and quality of wood, (i) frequency of slime cells in bark and traumatic resin canals in wood, and (j) the response of wood and bark to mechanical wounding.

2 SAMPLING AREAS AND TEST TREES

The investigated forest stands belong to the Kočevje, Ljubljana, Maribor, and Postojna Forest Service district units. All of them, except Urbanc, are Dinaric silver fir - beech forest stands (Abieti-Fagetum dinaricum). The Figure 1 presents the sampling areas. Bistra and Ravnik were selected for long term observations of fir decline, periodical measuring of ER, anatomical and physiological interpretation of the readings, studies on growth reduction, phenology, reproductive growth, development of epicormic branches, as well as wood moisture content, wood quality, frequency of slime cells in the bark, traumatic resin canals in the wood, and the response of wood and bark to mechanical wounding. The sampling areas in Poljanska Dolina, Draga, Kočevski Rog and Urbanc were selected to measure the seasonal variation in ER as effected by
crown class and tree age. The sampling areas of Glažuta, Grčarice, Javornik, Kočevska Reka, Kočevski Rog, Mašun, Mokrec, Snežnik, and Škocjan were selected to study the growth depression and release, the relation between tree growth and climate, and to construct the tree-ring chronologies.

The investigations performed in areas labelled with marks:
(Raziskave opravljene na različno označenih plošvah):

- Long term observations of fir decline, seasonal and year variation in electrical resistance (ER), interpretation of ER, growth reduction, phenology, reproductive growth, epicormic branches, wood moisture content, wood quality, slime cells, traumatic resin canals, response of wood and bark to mechanical wounding;
 - Dolgotrajno spremljanje zdravstvenega stanja jel, sezonske in medletne variacije električne upomost (EU), interpretacija EU, rast in prirastek, fenologija, reproduktivna rast, sekundarna krošnja, vlažnost lesa, kvaliteta lesa, služne celice, travniški smolni kanali, odziv lesa in skojo na mehansko poškodovanje;

- Seasonal variation in ER as affected by crown class and tree age;
 - Sezonska variacija EU kot posledica cenotskega statusa in starosti drevja;

- Growth depression and release, the relation between tree growth and climate, construction of tree-ring chronologies;
 - Upad in izboljšanje radialne rasti, zveza med rastjo drevja in klimo, sestava kronologij širih branik;

Figure 1: The location of sampling areas in Slovenia.
Slika 1: Lokacija vzročnih ploskev v Sloveniji.
Mature, dominant or co-dominant trees ranging from healthy to severely damaged were selected. Their condition was assessed visually according to a three-class scale. The trees classified as 1 were assumed to be healthy, those classified as 2 were slightly affected and those classified as 3 were declining. The dying trees were not included in the sample.

3 ELECTRICAL RESISTANCE (ER) TO DETERMINE TREE CONDITIONS

Three types of measuring systems: the Shigometer, the Condiometer, and the Tree Tester were used to measure the ER. The Shigometer and the Condiometer are available commercially. The Tree Tester is microprocessor-based instrument to measure conductivity and temperature. It was devised by our experts (TORELLI et al. 1992a, BUČAR 1994). All instruments were equipped with moisture detection electrodes. The ER was measured at breast height. Pins were pushed through the bark and the vascular cambial zone and stopped at the most recent latewood. Since 1988, the measurements were taken periodically during the growing period.

The method proved to be essentially non-destructive. The wound caused by the electrode penetrating the living bark, cambial zone and recently formed wood, was relatively small (diameter 1 - 2 mm) and is compartmentalised within a short time (TORELLI et al. 1996).

The ER measuring proved to be a reliable method which could be used in addition to visual crown evaluation. The readings are easy to obtain but a lot of experience is needed to interpret the results.

3.1 ANATOMICAL AND PHYSIOLOGICAL INTERPRETATION OF ER READINGS

The ER in living trees generally depends on several factors like the thickness of vascular cambial zone (VCZ) and the living bark which are penetrated by the
electrodes (TORELLI et al. 1990d, TORELLI / ČUFAR 1994a), the number of living cells ruptured (OVEN 1993, OVEN et al. 1995), and the concentration of mobile ions, mainly potassium (KRIŽAJ et al. 1994). Seasonal variations of the ER is a consequence of variations in the thickness of the VCZ as well as ion concentration (KRIŽAJ / ŠTUPAR 1995b and 1996).

Generally, the mature unsuppressed healthy trees showed the lowest ER values (TORELLI et al. 1989b, 1990b). In declining trees the ER was higher due to reduced thickness of the VCZ (OVEN 1993, OVEN et al. 1995) and lower ion concentration (KRIŽAJ et al. 1994, KRIŽAJ / ŠTUPAR 1995b and 1996). Frequently, a pronounced decrease in ER in dying trees was linked to fungal decay (TORELLI et al. 1990d, TORELLI / ČUFAR 1994a).

During the year ER was lowest at the top of the growing season and highest in the dormant period. Younger healthy, unsuppressed trees with the thickest VCZ and thinnest living bark showed the most pronounced seasonal variations in the ER (TORELLI et al. 1992b, KRIŽAJ / ŠTUPAR 1995b and 1996). It can generally be stated that the ER increases during the drought periods.

A strong correlation was established between the ER at breast height and the crown class according to Kraft in even aged forests. ER values always increased with degree of suppression (ROBIĆ et al. 1990, ROBIĆ 1994).

3.2 MONITORING TREE CONDITION

At the maximum physiological activity in the growing season mature dominant and co-dominant silver firs were assessed as follows: ER 7-9 kΩ for healthy or slightly damaged trees, ER 10-11 kΩ for affected trees, where recovery is possible, ER 12-13 kΩ for irreversibly damaged trees, and ER 14 kΩ or above, for trees in which rapid dieback is expected (TORELLI et al. 1990d, TORELLI / KRIŽAJ 1991).

Almost 60% of trees showed slight year to year variation in the ER and their condition was considered stable (TORELLI et al. 1990d, TORELLI / ROBIĆ
Healthy and less affected trees often showed an improvement, which was observed in those years with favourable hygrothermic conditions (e.g. 1989, 1990). Increased damage and mortality of declining trees was observed particularly after severe winters (e.g. 1985) or prolonged summer droughts (e.g. 1992, 1993), especially on dryer, rocky terrain.

In 1988, 32% of the trees from Bistra and 47% from the Ravnik were bioelectrically qualified as apparently healthy. In 1994 these values were 28% and 35% resp. By 1994, 25% of all trees in Bistra and 17% on the Ravnik died and were removed (Torelli / Čufar 1994b, 1995b and 1996).

4 TREE RING ANALYSES

Tree ring analyses were performed in accordance with standard procedures. Either two cores per tree or stem discs were taken from breast height. In addition complete stem analyses were performed for 44 trees.

Tree rings in declining trees indicate that wood formation has been suppressed for at least for three decades. Čufar (1990) reported for 1985 that all trees from Bistra, including those classified apparently healthy, showed a declining tendency of tree-ring widths. The suppression of cambial mitotic activity and reduced wood formation usually began near tree base and proceeded acropetally. In declining trees we established up to 11 missing or incomplete rings (Torelli et al. 1986a and 1986b, Levanič 1996). The height growth was affected only in the most severely damaged trees (Torelli et al. 1986a and 1986b, Čufar 1990). The growth depression increased with increasing stand destruction (Čufar et al. 1994).

Extended investigations of Levanič (1996, 1997) in 12 sampling areas (indicated with circles in Fig. 1) showed that the ring widths of variously affected silver firs declined rapidly after 1960 and reached their minimum values in 1976. Later radial growth has gradually been recovering up to the present. The most notable growth release was observed in healthy trees.
Using response functions, the same author showed that warm spring months and moderately warm summer months with precipitation above the average were most favourable for the radial growth.

LEVANIČ (1996, 1997) also proved that the silver fir responded very sensitively to forest management treatments. The greatest growth reduction was observed after intense harvesting which coincided with unfavourable climatic conditions.

ČUFAR (1990) constructed the first local tree-ring chronology of fir. This work was continued by LEVANIČ and ČUFAR (1995a and 1995b). Based on seven local chronologies, LEVANIČ (1996) constructed the first regional Slovene Dinaric silver fir chronology which covered the period of 1790-1995. The standard chronologies were successfully used to detect and locate incomplete and missing rings as well as for improved understanding of the factors affecting radial growth of trees.

5 PHENOLOGY, OCCURRENCE OF EPICORMIC BRANCHES AND REPRODUCTIVE GROWTH

Five phenological phases determined as time of bud swelling, and of various phases of shoot growth were observed between 1988 - 1995. Among them, the time of bud bursting proved to be the most significantly correlated to tree conditions. Declining trees generally flushed at least one week earlier than apparently healthy ones. It remains unclear whether the earlier flushing is an inherited characteristic or a consequence of tree damage (ČUFAR et al. 1995 and 1996).

Epicormic branches formed a secondary crown. If present, they were always observed in declining trees. Their number along the bole increased with higher degrees of tree damage. Their occurrence generally retarded the dieback. In some rapidly declining trees epicormic branches did not occur. No correlation between their presence and the time of bud-bursting was established (ČUFAR et al. 1995 and 1996). The investigations of LEVANIČ (1996) showed that the presence of epicormic branches positively affected the radial growth at stem
base but also with lower proportions of late wood.

The quantity of male- (microstrobili) and female cones (megastrobili) was determined in late spring of the years 1988 - 1995. Their frequency generally decreased with increasing tree damage. Among declining trees those without cones predominated. Generally, abundant coning was only observed in healthy trees and the correlation between coning and tree damage was more significant for female cones (TORELLI et all. 1989c, ROBIĆ et all. 1993, ĆUFAR et all. 1994, 1995 and 1996).

6 WOOD QUALITY

Moisture content (MC) was recorded along radial profiles in the wood and the bark at various heights of the trees.

In healthy silver firs, the MC was generally the highest in sapwood (above 160%) and lowest in heartwood (around 40%). At the base of trees we usually found a normal wet-heart. The wet-heart always occurred at the location of an uncoloured heartwood. In declining trees an irregular wet-heart spread into the sapwood. It occurred at tree base and at higher stem levels. In the most damaged silver firs the wet-heart was dehydrated. It was normally surrounded by a 2-3 mm dry zone (ĆUFAR 1990).

Because sapwood, wetwood, and the dry zone between them were found to coexist in living trees, it has been hypothesised that osmotic water transport may occur from sapwood to wetwood through the dry zone functioning as a semipermeable membrane (TORELLI et all. 1986a and 1986b).

No significant differences between healthy and declining trees were found for the moisture content of the bark.

The MC affects the quality of wood which can be separated into the following categories: sapwood, dehydrated non-coloured heartwood, normal wet-heart on the location of heartwood, and abnormal wet-heart radiating into the sapwood. Variability in MC of wood must be respected when choosing the kiln drying
schedules. Special care is advised when drying, gluing and finishing the wood.

Beside extremely narrow tree-rings and altered proportion of early- and late-wood (TORELLI et al. 1986a and b, LEVANIČ 1996) no changes in wood structure related to tree damage were observed. It is assumed that most physical and mechanical properties of wood remain unchanged.

In another experiment it has been shown that the magnetic resonance imaging (MRI) can be used successfully to determine the MC and the density of wood and their distribution, as well as to differentiate the tissues phloem, vascular cambial zone and wood (TORELLI et al. 1990a).

7 OCCURRENCE OF SLIME CELLS IN PHLOEM AND TRAUMATIC RESIN CANALS IN XYLEM

The occurrence of slime cells in the nonconducting phloem or traumatic resin canals in xylem was investigated according to the virus hypothesis but no correlation was found between their occurrence and the silver fir dieback. On the other hand, several indices showed that slime cells and traumatic resin canals might occur due to mechanical wounding (TORELLI et al. 1989a, 1992c, TORELLI et al. 1996).

8 RESPONSE OF WOOD AND BARK TO MECHANICAL WOUNDING

High variability was observed in the degree of discolouration associated with wounds in healthy or declining trees. In declining trees the discolourations coalesced with the presumably pre-existing wetwood (TORELLI et al. 1988, ČUFAR 1990).

After mechanical wounding cambium responded with the following disturbances in differentiation: the fusiform cambial initials and younger differentiating cells without secondary walls divided in transverse direction giving axial parenchyma. Older and less vital differentiating tracheids with protoplasts died and discoloured.
Tracheids formed after injury were shorter and smaller in cross-sections than the normal ones and were similar to juvenile tracheids. The rays often swelled, or uniseriate rays transformed to biseriate ones (TORELLI et al. 1990c, 1990e, 1990f, KRIŽAJ et al. 1995a).

Additionally, severe alteration of cell orientation was observed. In xylem formed after wounding, longitudinal sections resembled cross sections. The deorientation was ascribed to a partial release of growth stresses (TORELLI et al. 1990c, KRIŽAJ 1993). Based on experiments where we partly removed the strips of bark it has been suggested that the changed anatomy is the result of simultaneous response to the release of bark pressure and growth stresses in wood (TORELLI et al. 1990c).

With increasing radial and tangential distance from the wound, the anatomical characteristics of wood formed after wounding gradually approached normal adult wood. The dying-out of older tissues accelerated the radial growth of new tissues, which indirectly accelerated the restoration of cambium continuity and improved the mechanical strength.

The processes after wounding were discussed in the sense of the CODIT (Compartmentalisation Of Decay in Trees) conceptual model. Disordered callus, followed by the tangential lines of traumatic resin canals in the immediate vicinity of the wound could be interpreted as a wall i.e. barrier zone (TORELLI et al. 1990c, 1990e, 1990f). Due to its limited extent (it ended after few centimetres), and variable structure, the function and the role of the barrier zone is under general discussion along with the model concept itself (TORELLI 1995a).

OVEN (1993) and OVEN / TORELLI (1994) showed the following changes and processes in wounded bark: (1) the outermost cells died out; (2) hypertrophy and hyperplasia of axial and ray parenchyma cells and formation of a parenchyma pad below dead tissues; (3) lignification of the outermost cells of the parenchyma pad; (4) suberization of the lignified cells; (5) division of the parenchyma cells and development of wound phellogen at the inner border of the ligno-suberized zone and (6) mitotic activity of newly formed phellogen and the development of
wound periderm; formation of ligno-suberized tissue seemed to be a prerequisite for its development. The formation of necrophyllactic periderms was considered as a type of bark compartmentalization. No significant differences in the responses to injury for healthy or declining trees were observed.

9 CONCLUDING REMARKS

Owing to its high economical importance, in the past silver fir has been increasingly extended over its natural range. Due to extensive cutting of beech, the fir often became a predominant species with much higher proportion than in natural mixed forests. The stands strongly affected by humans on atypical sites generally represent less stable ecosystems, where the fir presumably declines more rapidly. Visual, bioelectrical, and dendroecological observations of the silver fir in Slovenia have shown a sustained decline and mortality of mature trees, especially in the most man influenced, exposed, and extreme forest stands. Increased damage and mortality was commonly observed after severe winters or prolonged summer droughts, especially on dryer, rocky terrain. In the recent years healthy or only slightly damaged younger trees from less affected forest stands generally showed an improvement as indicated by a released growth. Growth release was especially observed in those years with favorable hygrothermic conditions. Measuring ER proved to be an objective and essentially non-destructive method to determine tree condition. Investigations to improve the method and to better interpret the results should continue.

The declining silver firs were characterized by loss of needles resulting in an increased crown transparency, occurrence of epicormic branches, earlier flushing, and decreased seed production. Additionally, the regeneration of young firs was often affected by increased roe and red deer populations. The natural regeneration of young trees was often possible only in fenced in areas to exclude animal populations.

Generally, the wood quality of affected trees was not reduced. The quality of wood originating from mechanically wounded forest trees was generally lowered. Special care is advised when processing the wood containing any kind of wet-
10 SUMMARY

A review of the investigations on silver fir (Abies alba Mill.) decline in Slovenia, carried out by the Chair for Wood Science, directed by Torelli, are presented. The investigations comprised monitoring tree condition using electrical resistance (ER) measuring method, anatomical and physiological interpretation of ER readings, depression of cambial growth, study of phenology, reproductive growth, development of epicormic branches, moisture content and quality of wood, frequency of slime cells in bark and traumatic resin canals in wood, and the response of wood and bark to mechanical wounding.

Measuring ER proved to be an objective and essentially non-destructive method to determine the tree condition. It was influenced by the thickness and condition of the living tissues which were penetrated by the electrodes. The number of ruptured living cells and the concentration of mobile potassium ions affected the ER. The readings were lowest in mature unsuppressed, healthy trees at the top of the growing season. ER increased with degree of damage and suppression of trees and was highest in the dormant period.

The formation of wood was suppressed in declining trees for at least three decades. Growth declined rapidly after 1960 and reached its minimum in 1976. Later the radial growth gradually increased up to present. The most notable growth release was observed in healthy trees.

The declining trees were characterised by an earlier flushing, abundant occurrence of epicormic branches, reduced formation of male and female cones, reduced moisture content of the sapwood, and by the formation of irregular wetwood. No correlation was found between tree damage and occurrence of slime cells in the nonconducting phloem or traumatic resin canals in xylem. Wood and bark tissues of healthy and declining trees responded similarly to mechanical wounding.
POVZETEK

Pretstavljamo pregled raziskav Katedre za tehnologijo lesa pod vodstvom Torellija o propadanju jelke (Abies alba Mill.) v Sloveniji. Raziskave v obdobju 1985-1996 so vključevala spremljanje stanja jelke s pomočjo merjenja električne upornosti (EU), anatomske in fiziološke interpretacije meritev EU, upadanje rasti in prirostka, študij fenologije, reproduktivne rasti, pojava sekundarne krošnje, ugotavljanje vlažnosti in kvalitete lesa, števila slabih celic v skorji in travmatskih smolnih kanalov v lesu ter odziv lesa in skorje na poškodovanje.

Vrednosti so bile najnižje pri vladajočih, zrelih in zdravih drevsah, in najvišje pri prizadetih drevsah (TORELLI et all. 1989b, 1990b, 1990d, TORELLI / ČUFAR

Na podlagi vrednosti EU smo drevesa razporedili štiri razreze prizadetosti (TORELLI et all. 1990d, TORELLI / KRIŽAJ 1991). Med leti je bila EU pri približno 60% dreves stabilna, ostala drevesa pa so kazala variacije. Največ prehodov v boljši ali slabši razred prizadetosti so kazala srednje prizadeta drevesa. V letu 1988 je bilo zdravih v Bisti 32% in na Ravniku 47% dreves. V letu 1994 so bili deleži zdravih dreves 28% oz. 35%. Do leta 1994 jih je v Bisti odmrlo 28% na Ravniku pa 17%.

Od petih faz rasti poganjkov je bilo nabrejanje popokov v najtežnejši zvezi s prizadetostjo drevesa. Prizadeta drevesa so odganjala v splošnem vsaj en teden prej kot navidezno zdrava (ČUFAR et all. 1995 in 1996). Sekundarno krošnjo

Za potek sušenja, lepljenja in za površinsko obdelavo je pomembno ali les izvira iz beljave, suhe jedrovine, normalnega ali anomalnega mokrega srca. Večina fizičnih in mehanskih lastnosti lesa prizadetih jelk je nespremenjenih, zato kvaliteta lesa v splošnem ni manjša. Kvaliteta lesa je pogosto zmanjšana v deblih, ki so bila mehansko poškodovana.

Slikanje z električno magnetno resonancjo je pokazalo, da s to metodo lahko določimo vlažnost in kvalitativne razlike v tkivu lesa in skorje (Torelli et al. 1990a).

12 REFERENCES

KRŽAJ, B., 1993. Odziv lesa in kambija na mehanska poškodovanja ter les, nastal po poškodovanju pri bukvi (Fagus sylvatica L.) in navadni jelki (Abies alba Mill.). (Reaction of wood and cambium to mechanical wounding and wood formed after wounding in beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.).) Magistrsko delo, Univerza v Ljubljani.

KRŽAJ, B. / TORELLI, N. / ŠTUPAR, J., 1994. Preliminary research into ion concentration of bark and wood in relation to electrical resistance and tree condition in silver fir. Ecology and Silviculture of European Silver Fir. IUFRO WP: S1.01 - 08, Altensteig, Germany, s. 327-330.

ROBIČ, D., 1994. Determination of the coenotic status by measuring the electrical resistance of living tissues. Ecology and Silviculture of European Silver Fir. IUFRO WP, s. S1.01 - 08, Altensteig, Germany, s. 336-338.

TORELLI, N. / OVEN, P. / ZUPANČIČ, M., 1990c. Nastanek in značilnosti barierne cone ter lesa nastalega po rani. (The origin and characteristics of barrier zone and wood formed after wounding). Zbornik gozdarstva in lesarstva 36, s. 3 - 16.

TORELLI, N. / ZUPANČIČ, M. / OVEN, P. / ČUFAR, K., 1990f. Wall 4 ("barrier zone" CODIT) and xylem formed after wounding in silver fir (Abies alba Mill.). Proceedings of VIIIth Symposium "Fundamental Research of Wood". Warsaw, Poland, s. 22-26.

TORELLI, N. / ČUFAR, K., 1994b. Investigations of the response of the silver fir to air-pollution and mechanical injuries in Slovenia. Ecology and Silviculture of European Silver Fir. IUFRO WP: S1.01 - 08, Altensteig, Germany, s. 316-326.

