OBSTOJEČA IN POTENCIALNO MOŽNA OHREMNJENOST GOZDOV ŠALEŠKE DOLINE Z ŽVEPLOVIM DVOKISOM (SO₂)

Marjan ŠOLAR

Synopsis

The paper deals with the influence of the air polluted by sulphur dioxide (SO₂) on the forests of Šaleška valley. The method used in evaluating this impact is based on the exterior signs of damage as well as on the changes in sulphur content in the spruce needles.

The findings are to be used as a basis of the damage forecasts in the forests concerned after the completion of the phase IV of the thermal electric plant Šoštanj which will increase the existing emission by approximately 72 percent.

Numerous comparisons and sulphur content significance tests have been made in one and three years old spruce needles from various forest regions in Slovenia influenced by SO₂ as well as from the ones that have not been influenced.
Prispevek: 2. 11. 1976

Avtorjev naslov:
Marjan ŠOLAR, dipl.inž.gozd.
višji raziskovalni sodelavec
Inštitut za gozdno in lesno gospodarstvo
pri Biotehniški fakulteti
61000 Ljubljana, Večna pot 30
1. **UVODNA POJASNILA**

   Raziskave so bile narejene zato, da bi glede na obstoječe emisijsko (v ozračje oddani SO₂) in imisijsko (poškodbe) stanje izdelali kolikor mogoče natančno napoved imisij po povečanju TE za moč 320 MW.

   Obstoječe tri faze TE oddajajo dnevno 243 ton SO₂. IV. faza bo dodatno oddala v ozračje 175 t SO₂, kar pomeni 72,5% več.

   Vpliv kako emisije na rastlinstvo ugotavljamo ponavadi na štiri načine:
   - po značilnih zunanjih znakih ali simptomih,
   - po spremembi v kemični sestavi rastlinskih tkiv,
   - po metodah zmanjšane asimilacije, kar gozdnogospodarsko istimo z zmanjšanjem prirastka,
   - po pojavljanju večjega deleža bolezn in škodljivcev na gozdnem drevju zaradi fiziološke oslabljenosti, ki so jo povzročili plin.

   Pri našem delu smo uporabili prvi, drugi in delno tudi četrti način. Ugotavljanje zmanjšanega prirastka je sicer najboljši kazalnik, a dolgotrajno delo, ki ga v tem času ni bilo mogoče opraviti. Pokaže nam, kje je tista stopnja obremenjenosti, ki jo povzročajo plin in ima za posledico gospodarsko škodo - manjšo proizvodnjo lesa in manjše donose gozdov.

2. **SPLOŠNI NARAVNI POGOJI, POMEMBNI ZA ODNOS EMI SIJA - IMISIJA (POŠKODOVANOST)**

   Na nastanek poškodb pri določeni emisiji odločilno vplivajo naravni pogoji. Na primer vrsta in oblika tal sta odvisni od geološke podlage. Določena vrsta tal je pogoj za razvoj specifičnih gozdih združb z različno drevno sestavo. Kot vemo, se drevnesne vrste bistveno razlikujejo glede na to, koliko so odporne proti plinom. Iglavci so v primerjavi z listavci občutno manj odporni.

   Za nastanek poškodb je odločilna tudi kombinacija reliefnih in vremenskih razmer. V ozkih, globokih dolinah z manjšim premikanjem zračnih mas se plin slab razredčujejo, pogosto nastopajo temperaturni obrati ali inverzije, emitirani plin se porazdeli v majhnem prostoru in zato dosegajo vseuničujoče visoke koncentracije (Zasavje). Nasprotno se v vetrovih ravniških predelih brez temperaturnih obra-tov plini dvigajo ali pa jih veter odnaša in razredčuje. Če so ob vsem tem še drevnesne vrste v gozdovih odporne, poškodbe pravzaprav ne morejo nastati.

   Šoštanj s svojo okolico leži na sredini med obema skrajnostma. Dolina je ploska, obrobno hriboveje oddaljeno, razen Lokovice in grebena tik nad termoelektrarno, gozdi mešani z dobranim deležem občutljivih iglavec. Lokalna inverzijoska plast leži zelo nizko od 100 do 120 m pod dobn doline in nekako varuje dolino. Druga slabо izražena inverzijoska plast leži od 200 do 250 m nad dobn doline. Predvidena višina novega dimnika IV. faze bo to plast prebila, tako da ne bo bistvene-
3. PREGLED REZULTATOV RAZISKAV

3.1 Zunanji znaki poškodb

Pri določeni stopnji vpliva onesnaženega ozračja na rastlinstvo se pokažejo na posameznih rastlinskih vrstah tipični, za vrsto emisije značilni zunanji znaki obolenja ali simptom. Zunanji znak (odmrlo ali na pol odmrlo tkivo) je vedno posledica že dalj časa trajajočih motenj v fizioloških procesih rastline. Težavnejša je determinacija simptomov. Enake ali vsaj podobne patološke slike rastlinskega tkiva in oblike vzrasti lahko povzroči popolnoma različni vplivi (suša, požar, rastlinsko bolezni ali škodljivci, neustrezne rastišča, provenienca semena in sadik ...).

Determinacija poteka po načelu izločanja možnih vzrokov. Že v letih 1971 in 1972 smo pri rednem spremljanju žarišč imisijko poškodovane gozdne vegetacije v Sloveniji v glavnem pregledali ožjo šošanjsko okolico (greben za TE) in ugotovili znake lažjega obolenja gozdnega dreva zaradi žveplovega dvokisa na prvem grebenu za TE. Poleg tega smo opazili slab izraženo zaprašenost. Po teh ugotovitvah smo Šošanj registrirali kot imisijsko žarišče, ki ga je treba v prihodnje bolj podrobnoma raziskati.

Leta 1973 in do sestavljanja tega poročila v letu 1974 smo naredili štiri pregledne ožje in širše šošanjke okolice. Pri tem smo ugotovili tole:

a) Zunanji znaki ali simptomi so opazni samo na prvem grebenu južno od TE, najbolj na koti 535 m (po karti 1:50.000).

b) Poškodovani so predvsem iglavec (jelka, smreka in rdeči bor), pri enem opazovanju v letu 1973 (avgust) pa smo opazili poškodbe tudi na bukvi.

c) Poškodbe so bile od majhnih do srednjih. Rastline imajo od 10-20% poškodovanih iglic ali listov.

d) Nekaj smreč ima nagnjene vrhove, ki so značilna poškodba, nastala zaradi delovanja plinov. Po tem pojavu približno ocenjujemo plinske poškodbe.

e) Delež sušic je sliter opazno večji kot v oddaljenih zdravih gozdovih, na katerih prl ni vplival, vendar vzroči sušenja niso dovolj proučeni.

f) Na rastlinah nišno ugotovili prašnatih usedlin, ker so vsa opazovanja potekala po dežju. Na goznih tleh, predvsem ob panjih so usedline pepela zelo opazne.
3.2 Kemične analize


Žvepo je bilo določeno po metodi Eschnera (Fakulteta za naravoslovje in tehnologijo, mag. M. Petovar) kot celotno žvepo v sulfatni obliki (SO₄) in nato prerada nano na čisto žvepo.

Najnižja določena vrednost Š je 0,136%, preračunano na suho snot, najvišja 0,387% za enolete iglice. Triletne iglice imajo po pravilu daljše izpostavljenosti višje vrednosti, ki se gibljejo v razponu od 0,234% do 0,508% žvepa. Srednja vrednost znaša za enolete iglice 0,237%, za triletne pa 0,344%.

Če te vrednosti primerjamo z vrednostmi vsebnosti žvepa iz zdravih, čistih gozdovih predel je, ugotovimo, že brez statističnih metod precejšnje razlike. Srednja vrednost žvepa iz 12 vzorcev iz Pokljuke in Bohinja znaša za enolete iglice 0,132% in triletne 0,156% žvepa. Šest vzorcev iz Krima ima to vrednost 0,113% in 0,123%, štiri vzorce iz Karavanke nad Jesenicami 0,107% in 0,151%, pet iz Kopekove v Zasavici 0,149% in 0,214%, štiri iz širše okolice Celja (Ločica, Vinska gora, Svetinja) 0,170% in 0,232% S, trije iz zgornje Mežiške doline pa 0,103% in 0,126% žvepa.

Pregledna tabela srednjih vrednosti vsebnosti žvepa v smrekovih iglicah (%)

<table>
<thead>
<tr>
<th>Področje</th>
<th>% (enolete)</th>
<th>% (triletne)</th>
<th>Št. vzorcev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Šoštanj</td>
<td>0,237</td>
<td>0,341</td>
<td>26</td>
</tr>
<tr>
<td>Alpe</td>
<td>0,132</td>
<td>0,156</td>
<td>12</td>
</tr>
<tr>
<td>Krim</td>
<td>0,113</td>
<td>0,123</td>
<td>6</td>
</tr>
<tr>
<td>Karavanke</td>
<td>0,107</td>
<td>0,151</td>
<td>4</td>
</tr>
<tr>
<td>Zasavje</td>
<td>0,149</td>
<td>0,214</td>
<td>6</td>
</tr>
<tr>
<td>Celje</td>
<td>0,170</td>
<td>0,229</td>
<td>4</td>
</tr>
<tr>
<td>Koroška</td>
<td>0,103</td>
<td>0,126</td>
<td>3</td>
</tr>
</tbody>
</table>
3.2.1 Preiskus značilnosti razlik srednjih vrednosti s vsebnosti S v smrekovih iglicah z "domnevnega" šoštanjškega plinskega območja in primerjalnih območij

1. Primerjava Šoštanj - Alpe

\( a_1 \) - enoletna iglica

\[
\begin{align*}
n_1 &= 26 & \bar{x}_1 &= 0,237\% \, S & S_1 &= 0,051 \\
n_2 &= 12 & \bar{x}_2 &= 0,132\% \, S & S_2 &= 0,019 \\
\Delta \bar{x} &= 0,105\% \, S (začilno) & \\
t(izrač.) &= 9,142; & t(tab. \alpha = 0,05) &= 2,993
\end{align*}
\]

Po kriteriju enoletnih iglic se Šoštanj skozi, do sedaj "domnevno" imisiliško žarišče značilno razlikuje od primerjalnega alpskega območja.

\( a_2 \) - triletna iglica

\[
\begin{align*}
n_1 &= 26 & \bar{x}_1 &= 0,341\% \, S & S_1 &= 0,067 \\
n_2 &= 12 & \bar{x}_2 &= 0,156\% \, S & S_2 &= 0,028 \\
\Delta \bar{x} &= 0,185\% \, S * (začilno) & \\
t(izrač.) &= 12,007; & t(tab. \alpha = 0,05) &= 2,098
\end{align*}
\]

Značilna razlika, ki jo je pokazala primerjava triletnih iglic, dodatno potrjuje, da je na območju Šoštanja smrka obremenjena z žveplovim dvokiselom (SO₂).

2. Primerjava Šoštanj - Krim

\( a_1 \) - enoletna iglica

\[
\begin{align*}
n_1 &= 26 & \bar{x}_1 &= 0,237\% \, S & S_1 &= 0,051 \\
n_2 &= 6 & \bar{x}_2 &= 0,113\% \, S & S_2 &= 0,020 \\
\Delta \bar{x} &= 0,124\% \, S * (začilno) & \\
t(izrač.) &= 9,560; & t(tab. \alpha = 0,05) &= 2,288
\end{align*}
\]

\( a_2 \) - triletna iglica

\[
\begin{align*}
n_1 &= 26 & \bar{x}_1 &= 0,341\% \, S & S_1 &= 0,067 \\
n_2 &= 6 & \bar{x}_2 &= 0,123\% \, S & S_2 &= 0,021 \\
\Delta \bar{x} &= 0,218\% \, S * (začilno) & \\
t(izrač.) &= 13,930; & t(tab. \alpha = 0,05) &= 2,208
\end{align*}
\]

Značilni razlik z primerjavi enoletnih in triletnih iglic.
3. Primerjava šoštanj - Karavanke

*a* - enoletne iglice

\[
\begin{align*}
&n_1 = 26 & \bar{x}_1 = 0,237\% & S_1 = 0,051 \\
&n_2 = 4 & \bar{x}_2 = 0,106\% & S_2 = 0,023 \\
& & \Delta \bar{x} = 0,131\% & S^* (značilno) \\
t(izrač.) = 4,967; & t(tab. \alpha = 0,05) = 2,048
\end{align*}
\]

*b* - triletne iglice

\[
\begin{align*}
&n_1 = 26 & \bar{x}_1 = 0,341\% & S_1 = 0,067 \\
&n_2 = 4 & \bar{x}_2 = 0,151\% & S_2 = 0,030 \\
& & \Delta \bar{x} = 0,190\% & S^* (značilno) \\
t(izrač.) = 5,520; & t(tab. \alpha = 0,05) = 2,048
\end{align*}
\]

V obeh primerih značilni razlike.

4. Primerjava šoštanj - Zasavje (primerjalni)

*a* - enoletne iglice

\[
\begin{align*}
&n_1 = 26 & \bar{x}_1 = 0,237\% & S_1 = 0,051 \\
&n_2 = 5 & \bar{x}_2 = 0,149\% & S_2 = 0,029 \\
& & \Delta \bar{x} = 0,088\% & S^* (značilno) \\
t(izrač.) = 3,707; & t(tab. \alpha = 0,05) = 2,045
\end{align*}
\]

*b* - triletne iglice

\[
\begin{align*}
&n_1 = 26 & \bar{x}_1 = 0,341\% & S_1 = 0,067 \\
&n_2 = 5 & \bar{x}_2 = 0,214\% & S_2 = 0,058 \\
& & \Delta \bar{x} = 0,127\% & S^* (značilno) \\
t(izrač.) = 3,934; & t(tab. \alpha = 0,05) = 2,045
\end{align*}
\]

Kljub temu da gre za manjše \( \Delta x \) (razlika srednjih vrednosti) so pri 5-odstotnem tveganju razlike še vedno značilne.
5. Primerjava Šoštanj – Celje (primerjalni)

\[ a_1 - \text{enoletne iglice} \]

\[
\begin{align*}
\bar{x}_1 &= 0.237\% S & S_1 &= 0.051 \\
\bar{x}_2 &= 0.170\% S & S_2 &= 0.032 \\
\Delta \bar{x} &= 0.067\% S^* (značilno) & S &= 0.032 \\
t(\text{izrač.}) &= 2.516; & t(\text{tab.} \alpha = 0.05) &= 2.048
\end{align*}
\]

\[ a_2 - \text{triletne iglice} \]

\[
\begin{align*}
\bar{x}_1 &= 0.341\% S & S_1 &= 0.067 \\
\bar{x}_2 &= 0.228\% S & S_2 &= 0.084 \\
\Delta \bar{x} &= 0.113\% S^* (značilno) & S &= 0.032 \\
t(\text{izrač.}) &= 3.027; & t(\text{tab.} \alpha = 0.05) &= 2.048
\end{align*}
\]

Tudi ta primerjava daje značilne razlike med aritmetičnimi sredinami.

6. Primerjava Šoštanj – Koroška

\[ a_1 - \text{enoletne iglice} \]

\[
\begin{align*}
\bar{x}_1 &= 0.337\% S & S_1 &= 0.051 \\
\bar{x}_2 &= 0.103\% S & S_2 &= 0.020 \\
\Delta \bar{x} &= 0.234\% S^* (značilno) & S &= 0.032 \\
t(\text{izrač.}) &= 4.460; & t(\text{tab.} \alpha = 0.05) &= 2.050
\end{align*}
\]

\[ a_2 - \text{triletne iglice} \]

\[
\begin{align*}
\bar{x}_1 &= 0.341\% S & S_1 &= 0.067 \\
\bar{x}_2 &= 0.126\% S & S_2 &= 0.032 \\
\Delta \bar{x} &= 0.215\% S^* (značilno) & S &= 0.032 \\
t(\text{izrač.}) &= 5.412; & t(\text{tab.} \alpha = 0.05) &= 2.050 \\
t(\text{tab.} \alpha = 0.001) &= 3.690
\end{align*}
\]

Značilni razliki tudi ob 0,1% tveganju.

Vseh šest dvojnih primerjav srednjih vrednosti celotnega žvepla v smrko- kovih iglicah med domnevnim Šoštanjskim plinskim območjem in območji, na kateri žveplo zanesljivo ni imelo vpliva, jasno kaže, da je bila domnjava o manjk- šem vplivu SO2 na smreko popolnoma pravilna in v nobenem primeru površinsko pretirana. Iz navedenega sledi, da moramo biti pri dodatnem obremenjevanju gos- dov Šaleške doline z žveplovim dvoelosom previdni, da škodljiv vpliv ne bi preselil tiste meje, ki ima za posledico zmanjšanje varovalnih in socialnih funkcij gos. 208
3.2.2 Primerjava in ocene posameznih vrednosti vsebnosti žvepla v enoletnih in triletnih iglicah smreke iz Šoštanj

Če si pogledamo tabelo 1, vidimo, da se vrednosti za enolete iglice gibljejo v razmaku med najnižjo vrednostjo 0,136% S in najvišjo 0,470% S. Vzorci štev. 11 ni realen, ker je odvzet tik ob železniški progi in ga zato ne smemo upoštevati. Za sodbo o obremenjenosti vegetacije in ozračja je bolje, da analiziramo trilete iglice, katerih vsebnost žvepla daje vpošled v imisjski dogajanja zadnjih treh let. V našem primeru je stanje tako:

a) najnižja vrednost 0,234 nastopa pri vzorcu iz največje oddaljenosti (vzorec št. 19 v smeri ENE, 460 m nad morjem);

b) najvišja vrednost 0,470 nastopa pri vzorcu št. 5, ki je bil odvzet pri domačij ali Velikem vrhu, kar potrjuje domneve o najbolj potencialno ogroženem predelu v smeri Lekovica–Veliki vrh;

c) več višjih vrednosti imamo na manj oddaljenih mestih. Na primer: vzorci št. 21 (vrednost 0,462), oddaljen 1,65 km, vzorci št. 10 (vrednost 0,416), oddaljen 1,05 km, vzorci št. 18 (vrednost 0,416), oddaljen od vira emisij 3,2 km;

d) iz sistema izstopajoče vrednosti imajo vzroke v pogojih, ki nimajo z emisijo TE nobene povezače. To velja za vzorce št. 11 odvzet tik ob železniški progi (vrednost S = 0,508), vrednost vsebnosti žvepla v vzorcu št. 2 (druga najmanjša oddaljenost in čeprav najnižja vrednost) in vzorec št. 17 (4,5 km, 0,166, 0,288);

e) za ugotavljanje povezave o vsebnosti žvepla v odvisnosti od nebesne smeri in nadmorske višine imamo premalo podatkov. Najvišja vrednost leži južno od TE, druga največja vrednost pa v smeri severozahod. Po nadmorski višini se razlikujeta za 100 m.

V nadaljevanju želimo statistično ugotoviti, katere vrednosti izmed 26 vzorcev enoletnih in 26 vzorcev triletnih iglic z verjetnostjo 95% spadajo v omenjeno populacijo in kakšni so vzrski izpadov v pozitivni in negativni smeri.

\( a_1 \) - enolete iglice

Z \( 5\% = 1,96 \ S = 1,96 \times 0,051 = 0,9996 = 19 \)

\[ \bar{x} = 0,237\% S \]

Zgornja meja: \( 0,237 + 1,0 = 0,337 \% S \)

Spodnja meja: \( 0,237 - 1,0 = 0,137 \% S \)

Najvišja vrednost iz populacije vzorcev je 0,337% S, leži natančno na zgornji meji intervala, s tem spada v interval. Tako je tudi z najnižjo vrednostjo 0,136% S. Vse posamezne vrednosti so v omenjenem intervalu.
a_2 - triletne iglice

Z \[ 5\% = 1,96 \quad S = 1,96 \times 0,067 = 0,131 \]
\[ \bar{x} = 0,341\% \quad S \]

\[
\begin{align*}
\text{zgornja meja:} & \quad 0,341 + 0,131 = 0,472\% \quad S \\
\text{spodnja meja:} & \quad 0,341 - 0,131 = 0,210\% \quad S
\end{align*}
\]

Najvišja vrednost med vzorci je 0,508 in gre iz intervala (vzorec leži tik ob že-lezniški progi). Druga najvišja vrednost 0,470 in tudi druge vrednosti so že v omenjenem intervalu.

Najnižja vrednost 0,234 leži znotraj \( x - 1,96 \quad S \).

Iz obeh primerjav je razvidno, da razen enega obrazloženega primera vsi vzorci po analizirani vrednosti celotnega žvepla ne izkazujejo velike raztresenosti in da so bili odvzeti s pravilno domnevo o razširjenosti onesnaženega zraka v Šaleški dolini. Enako smo ugotavljali že v prejšnjem poglavju.

3.2.3 Primerjava vrednosti vsebnosti žvepla v enoletnih in triletnih smrekovih iglicah iz Šoštanj in Celja

Zato, da bi še bolje osvetlili obremenjenosti gozdnega rastlinstva z žveplovim dvokisom v Šaleški dolini, smo naredili tudi primerjavo z vzorci s celjskega plinskega območja. Ker pa imamo iz Celja samo vzorce z mejnega območja, ne pa iz jedra - sredine areala, poškodovanega gozdnega rastlinstva, smo tudi v Šoštanj vzel za prvo primerjavo samo vzorec, ki so bolj oddaljeni od virja emisije. Ne glede na velikost poškodovanega območja morajo biti v mejnih predelih razmere zelo podobne. Mejno območje v nasem primeru označuje prehod med vidnimi in nevidnimi poškodbami, se pravi tam, kjer ponehajo zunanji znaki. V tem pasu smo v Celju odvzeli leta 1971 sedemnašaj vzorcev in ugotovili v njih vrednosti \( S \), kot jih navaja tabela št. 8.

Primerjava št. 1 - Šoštanj (večja oddaljenost kot 4 km) - Celje

\( a_1 \) - enoletne iglice

\[ n_1 = 10 \quad \bar{x}_1 = 0,219\% \quad S_1 = 0,056 \]
\[ n_2 = 17 \quad \bar{x}_2 = 0,178\% \quad S_2 = 0,029 \]
\[ \Delta \bar{x} = 0,141\% \quad S \] (neznačilno)

\( t(\text{izrač.}) = 2,103; \quad t(\text{tab. } \alpha = 0,05) = 2,343 \)

Neznačilnost razlik potrjuje domnevo o enakih imšaljskih razmerah v mejnih predelih.

210
$a_2$ - triletne iglice

$n_1 = 10 \quad \bar{x}_1 = 0,301\% \ S \quad S_1 = 0,040$

$n_2 = 17 \quad \bar{x}_2 = 0,267\% \ S \quad S_2 = 0,039$

$\Delta \bar{x} = 0,034\% \ S$ (značilno)

$t(\text{izrač.}) = 2,191; \quad t(\text{tab. } \alpha = 0,05) = 2,060$

Razlika je značilna, vendar sta obe vrednosti skoraj enaki. Značilnost razlik ni lahko razlagamo tudi s tem, da v enem ali drugem primeru nismo zajeli celotnega vplivanega območja.

Navedena testa potrjujeta, da je domneva o enakih ali vsaj zelo podobnih imisij-skih situacijah v mejnih predelih pravilna.

**Primerjava št. 2 - Šoštanj (vsi vzoriči) - Celje**

$a_1$ - enolete iglice

$n_1 = 26 \quad \bar{x}_1 = 0,237\% \ S \quad S_1 = 0,051$

$n_2 = 17 \quad \bar{x}_2 = 0,178\% \ S \quad S_2 = 0,029$

$\Delta \bar{x} = 0,059\% \ S$ (značilno)

$t(\text{izrač.}) = 4,811; \quad t(\text{tab. } \alpha = 0,5) = 2,079$

$a_2$ - triletne iglice

$n_1 = 26 \quad \bar{x}_1 = 0,341\% \ S \quad S_1 = 0,067$

$n_2 = 17 \quad \bar{x}_2 = 0,267\% \ S \quad S_2 = 0,039$

$\Delta \bar{x} = 0,074\% \ S$ (značilno)

$t(\text{izrač.}) = 4,604; \quad t(\text{tab. } \alpha = 0,05) = 2,080$

Značilnost razlik nakazuje značilnost območij. Iz obeh primerjav lahko povzame- mo, da se vsebnosti celotnega žvepla v smrekovih iglicah iz robnih predelov med seboj ne razlikujejo značilno, in da se značilno razlikuje poprečna obremenjenost zajetega šoštanjskega imisijskega žarišča od poprečne celjske obrobe. Šoštanjsko imisijsko območje je s tem ponovno dokazano.

4. **VREDNOST VSEBNOSTI ŽVEPLA V RASTLINSKIH TKIVIH**

Podatek o povečani vsebnosti žvepla v rastlinskih tkivih nam potrjuje vpliv onesnaženega ozračja na rastline. Stopnjo vpliva je zelo težko ali pa celo nemogoče določiti s kemičnimi analizami. Starejše teorije so na podlagi vsebnosti določene komponente iz onesnaženega ozračja razvrstile vzorce v več stopnej poškodovan-
nost, na primer: do vrednosti 0,16% S v smrekovih iglicah so vzel za neškodljivo količino, od 0,10 - 0,25 je bila 1. stopnja poškodovanosti, od 0,25 - 0,40 je bila osnova za srednjo - 2. stopnjo poškodovanosti itd. Teorija se je porušila ob dejstvu, da je v vzorcih iz močneje poškodovanih predelov vedno več odmrljih ali delno odmrljih iglic (rjavih - nekrotiziranih), ki vsebujejo manj smovi iz one-sneženega ozračja. Pojav se razlagamo s tem, da odmrlo ali delno odmrlo tkivo ne vsevrača več smovi, sekundarno pridobljene in akumulirane smovi se iz njega tudi izlučujejo. Tudi pri naših raziskavah smo omenjali pojav že nekajkrat registrirali v Zavetju in Celju.

Primerjava in razvrstitev vzorcev glede na različno vsebnost švepla je možna (upravičena) samo v skupini vzorcev, ki so vsi brez odmrljih delov. Vzorci iz Šoštanj so bili vsi primerljivi, zato smo lahko narečili nekaj primerjav. Poveplantsko moramo, da imajo lahko vzorci iz manj poškodovanih območij višje vrednosti švepla kot tisti iz močneje poškodovanih območij, zato nas šoštanske razmera visoke vrednosti ne smejo presenetiti.

Kemične analize našejo kažejo, da emisija obstaja, zelo malo pa povedo o stopnji vpliva. Važno je, da se pri primerjavah opremo na zanesljive podatke, pravilno dobičimo vrednost s primerjalnih območij in naredimo statistične preskuse.


Če bi hoteli ugotoviti količinski vpliv SO2 na gozdove v okolici Šoštanj, bi morali hkrati analizirati prirastke. Šele ob primerjavi med vsebnostjo švepla v iglicah smreke in prirastkom bi zanesljivo lahko določili gospodarsko škodo. Predlagamo razvrstitven raziskav.

POVZETEK

Povečanje emisije za 75% ne pomeni tudi 75 - odstotega povečanja inštitui. Pri majhnih obremenjenosti določeno povečanje emisije povzroči ponavadi manjše povečanje imisije, pri močnih obremenjenosti pa povzroči enako povečanje precejšajo škodo. Na primer: imamo malo poškodovane gozde, ki je nenadoma izpostavljena še enkrat večji koncentraciji plinov. Poškodovanost v tem primeru ne bo še enkrat večja. Če je poškodovanost že močna, pa že manjše povečanje lahko uniči vse.
Upoštevati moramo tudi, da bo dodatna emisija SO\(_2\) v Šoštanju prišla v ozračje na drugem mestu in večji višini. Zelo težko in skoraj nemogoče je, da bi se obe emisiji natvorili in na določenih mestih na terenu ustvarili za 75% slabše imisijeske pogoje.

Pri 75-odstotnem povečanju emisije SO\(_2\) TE Šoštanj, ter glede na raziskave v Šaleški dolini in izkušnje z drugih plinskih omrežij predvidevamo v prihodnosti tole:

1. Enako obremenjenost gozdnega rastlinstva v gozdovih predelih pod višino 600 m (nadmorska višina Šoštanja + višina dimnika IV. faze);
2. povečano obremenjenost nad 600 m, ki na bližnjih predelih lahko povzroči vidno poškodbo na občutljivih iglavilih (tu mislimo smreko);
3. smreka bo v vsem območju, ki smo ga leta 1973 zajeli z vzorci, manj pri raščala;
4. pri listavcih ne pričakujevamo večjih poškodb in večje gospodarske škode;
5. sam obstoj gospodarsko pomembnih drevesnih vrst ne bo ogrožen. vo dosedanjih izkušanjah tudi ne bo ogrožen grmovni in zeliščni sloj, ki je poglavito nosilec posrednega gozdnega koristi, zaradi česar ne pričakujevamo v bližini prihodnost bistvenega poslabšanja varovalnih in socialnih vlog gozda.

Glede na ugotovitve in napovedi predlagamo:

1. Podrobno je treba analizirati prirastek.
2. Gospodarske škode (izpad prirastka, manjša vrednost sorimentov, večje vlaganje v območje, nego in varstvo gozdov ter v zasebnem sektorju, da izguba na zaslužku pri izdelavi in spravilu) naj se izplačuje kot redna leto odškodnina. Škodo na posrednih vlogah gozda, ki lahko nastanejo pri daljši izpostavljenosti delovanja plinov ali povečani intenziteti delovanja, je obravnavati ločeno na podlagi posebne študije.
3. Če se pokaže, da kaka drevesna vrsta v novih razmerah nima več prihodnosti (klijuh temu duž je to zelo malo verjetno), jo je treba na povzročiteljesc stroške zamenjati z drugo, bolj odporno vrsto. Razliko v morebitni manjši vrednosti lesa ali manjšem prirastku obračunamo kot odškodnino.
4. Ob pogoju, da posredne koristi gozda ne bode zmanjšane, in da bo odškodnina pravilno določena in pravočasno izplačana, gozdarstvo nima prizom pokusa k izgradnji IV. faze TE Šoštanj.

EXISTING AND POTENTIAL SULPHUR DIOXIDE (SO\(_2\)) IMPACT ON THE FORESTS OF ŠALEŠKA VALLEY

SUMMARY

A 75 percent increase in emission does not represent an equal increase in immisson. At low concentration levels a certain increment in emission usually brings
about a small increase in immission. At high concentration levels, however, the
same increase causes a significant damage. For example: in case of a little da-
maged forest which has been suddenly exposed to a double gas concentration, the
damage will not increase by 100 percent. In case of a severely damaged forest,
however, even a smaller increase can cause a complete destruction.

It has to be also considered that the additional SO2 emission in Šoštanj will en-
ter the atmosphere at a greater height and at a different locale. It is very un-
likely - virtually impossible - that both emissions would be superimposed, thus
creating at certain places immission by 75 percent greater from the existing one.

On the basis of the research conducted in Šaleška valley and of the experience
from other gas - endangered forest areas the following effects can be expected
if a 75 percent increase in SO2 emission from the thermal power plant Šoštanj
is to take place:
1. The same level of gas-load acting upon forest in places up to 600 meters
above sea level (altitude of Šoštanj + the stage height in phase IV)
2. An increased gas-load in altitude above 600 meters, which can cause visible
damages to the sensitive conifers (spruce) in the nearby localities
3. The increment growth of spruce will decrease in the entire area covered by
sampling in 1973
4. In case of deciduous tree species no significant damages and economic losses
are foreseen
5. The very existence of economically important tree species will not be endan-
gered. According to previous experiences the shrub and herb layers will not
be endangered either. These two layers are the main carriers of the indirect
forest functions, therefore no essential reduction of social and protective func-
tions are to be expected in the near future.

On the basis of these findings and forecasts the following is suggested:
1. A detailed increment growth analysis is to be made
2. Economic damages (loss in increment, lower assortment value, higher invest-
ments in regeneration and protection of the forests and in the case of private
owners also the loss of earnings in primary conversion and transport) should
be paid out as indemnities on a yearly basis. The damages to the indirect fo-
est functions that can occur after a longer exposure to the gas impacts or
due to an increase in gas concentration are to be dealt with in separate study

3. In case it shows that a certain tree species has no future under the new con-
ditions (which is not very likely) it has to be replaced by another, more re-
sistant tree species at the expense of the party responsible for such new con-
ditions. In case that the new tree species would have a lower increment and/or
its wood would fetch lower prices, the differences are to be calculated and
paid out as indemnities
4. There would be no further remarks regarding construction of phase IV of thermal power plant Šoštanj, provided:
- the social and protective functions of the forests will not be reduced,
- the indemnities will be calculated in a correct manner and paid in time.

6. UPORABLJENI VIRI

ŠOLAR, M.: Lastno interno objavljeno in manuskripno građivo (elaborati, poročila, izvedenska mnenja ...).

7. PRILOGE

a) Tabele 1-8

b) Pregledna karta lokacij odzema vzorcev, M = 1:50.000.
<table>
<thead>
<tr>
<th>Štev. vzorca</th>
<th>enoletne</th>
<th>triletne</th>
<th>ocena</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SO₄ %</td>
<td>S%</td>
<td>SO₄ %</td>
</tr>
<tr>
<td>1</td>
<td>0,686</td>
<td>0,229</td>
<td>0,952</td>
</tr>
<tr>
<td>2</td>
<td>0,583</td>
<td>0,190</td>
<td>0,838</td>
</tr>
<tr>
<td>3</td>
<td>0,820</td>
<td>0,274</td>
<td>1,060</td>
</tr>
<tr>
<td>4</td>
<td>0,652</td>
<td>0,218</td>
<td>1,064</td>
</tr>
<tr>
<td>5</td>
<td>1,005</td>
<td>0,337*</td>
<td>1,408</td>
</tr>
<tr>
<td>6</td>
<td>0,683</td>
<td>0,230</td>
<td>1,188</td>
</tr>
<tr>
<td>7</td>
<td>0,703</td>
<td>0,236</td>
<td>0,904</td>
</tr>
<tr>
<td>8</td>
<td>0,608</td>
<td>0,203</td>
<td>0,964</td>
</tr>
<tr>
<td>9</td>
<td>0,872</td>
<td>0,291</td>
<td>1,032</td>
</tr>
<tr>
<td>10</td>
<td>0,744</td>
<td>0,248</td>
<td>1,264</td>
</tr>
<tr>
<td>11</td>
<td>0,886</td>
<td>0,296</td>
<td>1,522</td>
</tr>
<tr>
<td>12</td>
<td>0,586</td>
<td>0,196</td>
<td>0,898</td>
</tr>
<tr>
<td>13</td>
<td>0,596</td>
<td>0,199</td>
<td>0,988</td>
</tr>
<tr>
<td>14</td>
<td>0,848</td>
<td>0,283</td>
<td>1,016</td>
</tr>
<tr>
<td>15</td>
<td>0,910</td>
<td>0,204</td>
<td>1,246</td>
</tr>
<tr>
<td>16</td>
<td>0,723</td>
<td>0,240</td>
<td>1,016</td>
</tr>
<tr>
<td>17</td>
<td>0,496</td>
<td>0,166</td>
<td>0,852</td>
</tr>
<tr>
<td>18</td>
<td>0,552</td>
<td>0,184</td>
<td>0,826</td>
</tr>
<tr>
<td>19</td>
<td>0,512</td>
<td>0,171</td>
<td>0,702</td>
</tr>
<tr>
<td>20</td>
<td>0,406</td>
<td>0,136Δ</td>
<td>0,782</td>
</tr>
<tr>
<td>21</td>
<td>0,888</td>
<td>0,297</td>
<td>1,382</td>
</tr>
<tr>
<td>22</td>
<td>0,752</td>
<td>0,251</td>
<td>0,920</td>
</tr>
<tr>
<td>23</td>
<td>0,514</td>
<td>0,281</td>
<td>1,056</td>
</tr>
<tr>
<td>24</td>
<td>0,616</td>
<td>0,206</td>
<td>0,984</td>
</tr>
<tr>
<td>25</td>
<td>0,948</td>
<td>0,317</td>
<td>1,044</td>
</tr>
<tr>
<td>26</td>
<td>0,665</td>
<td>0,223</td>
<td>0,832</td>
</tr>
</tbody>
</table>

* najvišji vrednosti
Δ najnižji vrednosti
Tabela št. 2: Primerjalni vzorci iz alpskega prostora
(Pokljuka, Bohinj) 1973

<table>
<thead>
<tr>
<th>Štev. vzorca</th>
<th>enoletne</th>
<th>triletno</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SO % 4</td>
<td>S% 4</td>
</tr>
<tr>
<td>1</td>
<td>0,398</td>
<td>0,113</td>
</tr>
<tr>
<td>2</td>
<td>0,342</td>
<td>0,114</td>
</tr>
<tr>
<td>3</td>
<td>0,476</td>
<td>0,159</td>
</tr>
<tr>
<td>4</td>
<td>0,480</td>
<td>0,150*</td>
</tr>
<tr>
<td>5</td>
<td>0,456</td>
<td>0,152</td>
</tr>
<tr>
<td>6</td>
<td>0,362</td>
<td>0,128</td>
</tr>
<tr>
<td>7</td>
<td>0,435</td>
<td>0,145</td>
</tr>
<tr>
<td>8</td>
<td>0,334</td>
<td>0,112</td>
</tr>
<tr>
<td>9</td>
<td>0,443</td>
<td>0,148</td>
</tr>
<tr>
<td>10</td>
<td>0,382</td>
<td>0,128</td>
</tr>
<tr>
<td>11</td>
<td>0,335</td>
<td>0,112</td>
</tr>
<tr>
<td>12</td>
<td>0,350</td>
<td>0,117</td>
</tr>
</tbody>
</table>

\[ \bar{x} = 0,132 \]  
\[ \bar{y} = 0,156 \]

Tabela št. 3: Primerjalni vzorci - Krim 1971

<table>
<thead>
<tr>
<th>Štev. vzorca</th>
<th>enoletne</th>
<th>triletno</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SO % 4</td>
<td>S% 4</td>
</tr>
<tr>
<td>1</td>
<td>0,28</td>
<td>0,094</td>
</tr>
<tr>
<td>2</td>
<td>0,30</td>
<td>0,100</td>
</tr>
<tr>
<td>3</td>
<td>0,40</td>
<td>0,134</td>
</tr>
<tr>
<td>4</td>
<td>0,40</td>
<td>0,134</td>
</tr>
<tr>
<td>5</td>
<td>0,37</td>
<td>0,090</td>
</tr>
<tr>
<td>6</td>
<td>0,37</td>
<td>0,124</td>
</tr>
</tbody>
</table>

\[ \bar{x} = 0,113 \]  
\[ \bar{y} = 0,123 \]

217
### Tabela št. 4: Primerjalni vzorci - Karavanke 1971

<table>
<thead>
<tr>
<th>Štev. vzorca</th>
<th>enolete</th>
<th></th>
<th>trilete</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SO₄ %</td>
<td>%</td>
<td>SO₄ %</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>0,33</td>
<td>0,110</td>
<td>0,39</td>
<td>0,130</td>
</tr>
<tr>
<td>2</td>
<td>0,35</td>
<td>0,117</td>
<td>0,58</td>
<td>0,194</td>
</tr>
<tr>
<td>3</td>
<td>0,22</td>
<td>0,073</td>
<td>0,40</td>
<td>0,154</td>
</tr>
<tr>
<td>4</td>
<td>0,38</td>
<td>0,127</td>
<td>0,43</td>
<td>0,144</td>
</tr>
</tbody>
</table>

\[ \bar{x} = 0,107 \quad 0,151 \]

### Tabela št. 5: Primerjalni vzorci - Zasavje 1971

<table>
<thead>
<tr>
<th>Štev. vzorca</th>
<th>enolete</th>
<th></th>
<th>trilete</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SO₄ %</td>
<td>%</td>
<td>SO₄ %</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>0,40</td>
<td>0,134</td>
<td>0,71</td>
<td>0,237</td>
</tr>
<tr>
<td>2</td>
<td>0,43</td>
<td>0,144</td>
<td>0,88</td>
<td>0,294</td>
</tr>
<tr>
<td>3</td>
<td>0,59</td>
<td>0,197</td>
<td>0,67</td>
<td>0,224</td>
</tr>
<tr>
<td>4</td>
<td>0,36</td>
<td>0,120</td>
<td>0,45</td>
<td>0,150</td>
</tr>
<tr>
<td>5</td>
<td>0,45</td>
<td>0,150</td>
<td>0,50</td>
<td>0,167</td>
</tr>
</tbody>
</table>

\[ \bar{x} = 0,149 \quad 0,214 \]

### Tabela št. 6: Primerjalni vzorci - Celje 1971

<table>
<thead>
<tr>
<th>Štev. vzorca</th>
<th>enolete</th>
<th></th>
<th>trilete</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SO₄ %</td>
<td>%</td>
<td>SO₄ %</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>0,65</td>
<td>0,217</td>
<td>1,06</td>
<td>0,354</td>
</tr>
<tr>
<td>2</td>
<td>0,50</td>
<td>0,167</td>
<td>0,57</td>
<td>0,190</td>
</tr>
<tr>
<td>3</td>
<td>0,44</td>
<td>0,147</td>
<td>0,58</td>
<td>0,194</td>
</tr>
<tr>
<td>4</td>
<td>0,45</td>
<td>0,150</td>
<td>0,53</td>
<td>0,177</td>
</tr>
</tbody>
</table>

\[ \bar{x} = 0,170 \quad 0,229 \]

218
### Tabela št. 7: Primerjalni vzorci - Koroška

<table>
<thead>
<tr>
<th>Štev. vzorca</th>
<th>enolete $SO_4^-$</th>
<th>9%</th>
<th>triletne $SO_4^-$</th>
<th>9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,24</td>
<td>0,114</td>
<td>0,48</td>
<td>0,160</td>
</tr>
<tr>
<td>2</td>
<td>0,34</td>
<td>0,114</td>
<td>0,36</td>
<td>0,120</td>
</tr>
<tr>
<td>3</td>
<td>0,24</td>
<td>0,080</td>
<td>0,29</td>
<td>0,097</td>
</tr>
</tbody>
</table>

$\bar{x} =$ 0,103 0,126

### Tabela št. 8:

#### CELJE

<table>
<thead>
<tr>
<th>Štev. vzorca</th>
<th>enolete $SO_4^-$</th>
<th>9%</th>
<th>triletne $SO_4^-$</th>
<th>9%</th>
<th>Št.</th>
<th>enolete</th>
<th>triletne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,54</td>
<td>0,180</td>
<td>0,62</td>
<td>0,207</td>
<td>16</td>
<td>0,240</td>
<td>0,339</td>
</tr>
<tr>
<td>2</td>
<td>0,65</td>
<td>0,217</td>
<td>0,84</td>
<td>0,281</td>
<td>17</td>
<td>0,166</td>
<td>0,285</td>
</tr>
<tr>
<td>3</td>
<td>0,59</td>
<td>0,197</td>
<td>0,89</td>
<td>0,297</td>
<td>18</td>
<td>0,184</td>
<td>0,276</td>
</tr>
<tr>
<td>4</td>
<td>0,69</td>
<td>0,230</td>
<td>1,01</td>
<td>0,337</td>
<td>19</td>
<td>0,171</td>
<td>0,234</td>
</tr>
<tr>
<td>5</td>
<td>0,46</td>
<td>0,154</td>
<td>0,88</td>
<td>0,294</td>
<td>20</td>
<td>0,136</td>
<td>0,261</td>
</tr>
<tr>
<td>6</td>
<td>0,55</td>
<td>0,184</td>
<td>0,96</td>
<td>0,321</td>
<td>22</td>
<td>0,251</td>
<td>0,307</td>
</tr>
<tr>
<td>7</td>
<td>0,62</td>
<td>0,207</td>
<td>0,91</td>
<td>0,304</td>
<td>23</td>
<td>0,281</td>
<td>0,353</td>
</tr>
<tr>
<td>8</td>
<td>0,57</td>
<td>0,190</td>
<td>0,83</td>
<td>0,277</td>
<td>24</td>
<td>0,206</td>
<td>0,329</td>
</tr>
<tr>
<td>9</td>
<td>0,47</td>
<td>0,157</td>
<td>0,74</td>
<td>0,247</td>
<td>25</td>
<td>0,317</td>
<td>0,349</td>
</tr>
<tr>
<td>10</td>
<td>0,56</td>
<td>0,187</td>
<td>0,79</td>
<td>0,264</td>
<td>26</td>
<td>0,233</td>
<td>0,283</td>
</tr>
<tr>
<td>11</td>
<td>0,46</td>
<td>0,154</td>
<td>0,80</td>
<td>0,267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,44</td>
<td>0,147</td>
<td>0,64</td>
<td>0,214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0,44</td>
<td>0,147</td>
<td>0,59</td>
<td>0,197</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0,47</td>
<td>0,157</td>
<td>0,63</td>
<td>0,277</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,65</td>
<td>0,217</td>
<td>0,79</td>
<td>0,264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0,50</td>
<td>0,167</td>
<td>0,73</td>
<td>0,244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0,57</td>
<td>0,130</td>
<td>0,73</td>
<td>0,244</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\bar{x} =$ 0,178 0,267  $\bar{x} =$ 0,219 0,301

219